Files
SimpleRemoter/client/ScreenCapture.h

470 lines
16 KiB
C
Raw Normal View History

#pragma once
#include "stdafx.h"
#include <assert.h>
#include "CursorInfo.h"
#include "../common/commands.h"
#define DEFAULT_GOP 0x7FFFFFFF
#include <vector>
#include <queue>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <functional>
#include <future>
#include "X264Encoder.h"
class ThreadPool
{
public:
// <20><><EFBFBD><EFBFBD><ECBAAF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>̶<EFBFBD><CCB6><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>߳<EFBFBD>
ThreadPool(size_t numThreads) : stop(false)
{
for (size_t i = 0; i < numThreads; ++i) {
workers.emplace_back([this] {
while (true) {
std::function<void()> task;
{
std::unique_lock<std::mutex> lock(this->queueMutex);
this->condition.wait(lock, [this] { return this->stop || !this->tasks.empty(); });
if (this->stop && this->tasks.empty()) return;
task = std::move(this->tasks.front());
this->tasks.pop();
}
try {
task();
} catch (...) {
// <20><><EFBFBD><EFBFBD><EFBFBD>
}
}
});
}
}
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>̳߳<DFB3>
~ThreadPool()
{
{
std::unique_lock<std::mutex> lock(queueMutex);
stop = true;
}
condition.notify_all();
for (std::thread& worker : workers)
worker.join();
}
// <20><><EFBFBD><EFBFBD><EFBFBD>
template<typename F>
auto enqueue(F&& f) -> std::future<decltype(f())>
{
using ReturnType = decltype(f());
auto task = std::make_shared<std::packaged_task<ReturnType()>>(std::forward<F>(f));
std::future<ReturnType> res = task->get_future();
{
std::unique_lock<std::mutex> lock(queueMutex);
tasks.emplace([task]() {
(*task)();
});
}
condition.notify_one();
return res;
}
void waitAll()
{
std::unique_lock<std::mutex> lock(queueMutex);
condition.wait(lock, [this] { return tasks.empty(); });
}
private:
std::vector<std::thread> workers;
std::queue<std::function<void()>> tasks;
std::mutex queueMutex;
std::condition_variable condition;
std::atomic<bool> stop;
};
class ScreenCapture
{
private:
static BOOL CALLBACK MonitorEnumProc(HMONITOR hMonitor, HDC hdcMonitor, LPRECT lprcMonitor, LPARAM dwData)
{
std::vector<MONITORINFOEX>* monitors = reinterpret_cast<std::vector<MONITORINFOEX>*>(dwData);
MONITORINFOEX mi;
mi.cbSize = sizeof(MONITORINFOEX);
if (GetMonitorInfo(hMonitor, &mi)) {
monitors->push_back(mi); // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʾ<EFBFBD><CABE><EFBFBD><EFBFBD>Ϣ
}
return TRUE;
}
std::vector<MONITORINFOEX> GetAllMonitors()
{
std::vector<MONITORINFOEX> monitors;
EnumDisplayMonitors(nullptr, nullptr, MonitorEnumProc, (LPARAM)&monitors);
return monitors;
}
public:
ThreadPool* m_ThreadPool; // <20>̳߳<DFB3>
BYTE* m_FirstBuffer; // <20><>һ֡<D2BB><D6A1><EFBFBD><EFBFBD>
BYTE* m_RectBuffer; // <20><>ǰ<EFBFBD><C7B0><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
LPBYTE* m_BlockBuffers; // <20>ֿ黺<D6BF><E9BBBA>
ULONG* m_BlockSizes; // <20>ֿ<EFBFBD><D6BF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
int m_BlockNum; // <20>ֿ<EFBFBD><D6BF><EFBFBD><EFBFBD><EFBFBD>
int m_SendQuality; // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
LPBITMAPINFO m_BitmapInfor_Full; // BMP<4D><50>Ϣ
BYTE m_bAlgorithm; // <20><>Ļ<EFBFBD><C4BB><EFBFBD><EFBFBD><EFBFBD>
int m_iScreenX; // <20><>ʼx<CABC><78><EFBFBD><EFBFBD>
int m_iScreenY; // <20><>ʼy<CABC><79><EFBFBD><EFBFBD>
ULONG m_ulFullWidth; // <20><>Ļ<EFBFBD><C4BB>
ULONG m_ulFullHeight; // <20><>Ļ<EFBFBD><C4BB>
bool m_bZoomed; // <20><>Ļ<EFBFBD><C4BB><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
double m_wZoom; // <20><>Ļ<EFBFBD><C4BB><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ű<EFBFBD>
double m_hZoom; // <20><>Ļ<EFBFBD><C4BB><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ű<EFBFBD>
int m_biBitCount; // ÿ<><C3BF><EFBFBD>ر<EFBFBD><D8B1><EFBFBD><EFBFBD><EFBFBD>
int m_FrameID; // ֡<><D6A1><EFBFBD><EFBFBD>
int m_GOP; // <20>ؼ<EFBFBD>֡<EFBFBD><D6A1><EFBFBD><EFBFBD>
bool m_SendKeyFrame; // <20><><EFBFBD>͹ؼ<CDB9>֡
CX264Encoder *m_encoder; // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
ScreenCapture(int n = 32, BYTE algo = ALGORITHM_DIFF, BOOL all = FALSE) :
m_ThreadPool(nullptr), m_FirstBuffer(nullptr), m_RectBuffer(nullptr),
m_BitmapInfor_Full(nullptr), m_bAlgorithm(algo), m_SendQuality(100),
m_ulFullWidth(0), m_ulFullHeight(0), m_bZoomed(false), m_wZoom(1), m_hZoom(1),
m_FrameID(0), m_GOP(DEFAULT_GOP), m_iScreenX(0), m_iScreenY(0), m_biBitCount(n),
m_SendKeyFrame(false), m_encoder(nullptr)
{
m_BlockNum = 8;
m_ThreadPool = new ThreadPool(m_BlockNum);
static auto monitors = GetAllMonitors();
static int index = 0;
if (all && !monitors.empty()) {
int idx = index++ % (monitors.size()+1);
if (idx == 0) {
m_iScreenX = GetSystemMetrics(SM_XVIRTUALSCREEN);
m_iScreenY = GetSystemMetrics(SM_YVIRTUALSCREEN);
m_ulFullWidth = GetSystemMetrics(SM_CXVIRTUALSCREEN);
m_ulFullHeight = GetSystemMetrics(SM_CYVIRTUALSCREEN);
} else {
RECT rt = monitors[idx-1].rcMonitor;
m_iScreenX = rt.left;
m_iScreenY = rt.top;
m_ulFullWidth = rt.right - rt.left;
m_ulFullHeight = rt.bottom - rt.top;
}
} else {
//::GetSystemMetrics(SM_CXSCREEN/SM_CYSCREEN)<29><>ȡ<EFBFBD><C8A1>Ļ<EFBFBD><C4BB>С<EFBFBD><D0A1>׼
//<2F><><EFBFBD><EFBFBD><E7B5B1>Ļ<EFBFBD><C4BB>ʾ<EFBFBD><CABE><EFBFBD><EFBFBD>Ϊ125%ʱ<><CAB1><EFBFBD><EFBFBD>ȡ<EFBFBD><C8A1><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ļ<EFBFBD><C4BB>С<EFBFBD><D0A1>Ҫ<EFBFBD><D2AA><EFBFBD><EFBFBD>1.25<EFBFBD>Ŷ<EFBFBD>
DEVMODE devmode;
memset(&devmode, 0, sizeof(devmode));
devmode.dmSize = sizeof(DEVMODE);
devmode.dmDriverExtra = 0;
BOOL Isgetdisplay = EnumDisplaySettingsA(NULL, ENUM_CURRENT_SETTINGS, &devmode);
m_ulFullWidth = devmode.dmPelsWidth;
m_ulFullHeight = devmode.dmPelsHeight;
int w = GetSystemMetrics(SM_CXSCREEN), h = GetSystemMetrics(SM_CYSCREEN);
m_bZoomed = (w != m_ulFullWidth) || (h != m_ulFullHeight);
m_wZoom = double(m_ulFullWidth) / w, m_hZoom = double(m_ulFullHeight) / h;
Mprintf("=> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ű<EFBFBD><C5B1><EFBFBD>: %.2f, %.2f\t<EFBFBD>ֱ<EFBFBD><EFBFBD>ʣ<EFBFBD>%d x %d\n", m_wZoom, m_hZoom, m_ulFullWidth, m_ulFullHeight);
m_wZoom = 1.0 / m_wZoom, m_hZoom = 1.0 / m_hZoom;
}
if (ALGORITHM_H264 == m_bAlgorithm) {
m_encoder = new CX264Encoder();
if (!m_encoder->open(m_ulFullWidth, m_ulFullHeight, 20, m_ulFullWidth * m_ulFullHeight / 1266)) {
Mprintf("Open x264encoder failed!!!\n");
}
}
m_BlockBuffers = new LPBYTE[m_BlockNum];
m_BlockSizes = new ULONG[m_BlockNum];
for (int blockY = 0; blockY < m_BlockNum; ++blockY) {
m_BlockBuffers[blockY] = new BYTE[m_ulFullWidth * m_ulFullHeight * 4 * 2 / m_BlockNum + 12];
}
}
virtual ~ScreenCapture()
{
if (m_BitmapInfor_Full != NULL) {
delete[](char*)m_BitmapInfor_Full;
m_BitmapInfor_Full = NULL;
}
SAFE_DELETE_ARRAY(m_RectBuffer);
for (int blockY = 0; blockY < m_BlockNum; ++blockY) {
SAFE_DELETE_ARRAY(m_BlockBuffers[blockY]);
}
SAFE_DELETE_ARRAY(m_BlockBuffers);
SAFE_DELETE_ARRAY(m_BlockSizes);
SAFE_DELETE(m_ThreadPool);
SAFE_DELETE(m_encoder);
}
virtual int SendQuality(int quality)
{
int old = m_SendQuality;
m_SendQuality = quality;
return old;
}
virtual RECT GetScreenRect() const
{
RECT rect;
rect.left = m_iScreenX;
rect.top = m_iScreenY;
rect.right = m_ulFullWidth;
rect.bottom = m_ulFullHeight;
return rect;
}
public:
//*************************************** ͼ<><CDBC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><E3B7A8><EFBFBD><EFBFBD><EFBFBD>У<EFBFBD> *************************************
virtual ULONG CompareBitmap(LPBYTE CompareSourData, LPBYTE CompareDestData, LPBYTE szBuffer,
DWORD ulCompareLength, BYTE algo, int startPostion = 0)
{
// Windows<77>һ<E6B6A8><D2BB>ɨ<EFBFBD><C9A8><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ռ<EFBFBD><D5BC><EFBFBD>ֽ<EFBFBD><D6BD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>4<EFBFBD>ı<EFBFBD><C4B1><EFBFBD>, <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>DWORD<52>Ƚ<EFBFBD>
LPDWORD p1 = (LPDWORD)CompareDestData, p2 = (LPDWORD)CompareSourData;
LPBYTE p = szBuffer;
ULONG channel = algo == ALGORITHM_GRAY ? 1 : 4;
ULONG ratio = algo == ALGORITHM_GRAY ? 4 : 1;
for (ULONG i = 0; i < ulCompareLength; i += 4, ++p1, ++p2) {
if (*p1 == *p2)
continue;
ULONG index = i;
LPDWORD pos1 = p1++, pos2 = p2++;
// <20><><EFBFBD><EFBFBD><EFBFBD>м<EFBFBD><D0BC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ<EFBFBD><D6B5>ͬ
for (i += 4; i < ulCompareLength && *p1 != *p2; i += 4, ++p1, ++p2);
ULONG ulCount = i - index;
memcpy(pos1, pos2, ulCount); // <20><><EFBFBD><EFBFBD>Ŀ<EFBFBD><C4BF><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
*(LPDWORD)(p) = index + startPostion;
*(LPDWORD)(p + sizeof(ULONG)) = ulCount / ratio;
p += 2 * sizeof(ULONG);
if (channel != 1) {
memcpy(p, pos2, ulCount);
p += ulCount;
} else {
for (LPBYTE end = p + ulCount / ratio; p < end; p += channel, ++pos2) {
LPBYTE src = (LPBYTE)pos2;
*p = (306 * src[2] + 601 * src[0] + 117 * src[1]) >> 10;
}
}
}
return p - szBuffer;
}
//*************************************** ͼ<><CDBC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><E3B7A8><EFBFBD><EFBFBD><EFBFBD>У<EFBFBD> *************************************
ULONG MultiCompareBitmap(LPBYTE srcData, LPBYTE dstData, LPBYTE szBuffer,
DWORD ulCompareLength, BYTE algo)
{
int N = m_BlockNum;
ULONG blockLength = ulCompareLength / N; // ÿ<><C3BF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ļ<EFBFBD><C4BB><EFBFBD><EFBFBD>ֽ<EFBFBD><D6BD><EFBFBD>
ULONG remainingLength = ulCompareLength % N; // ʣ<><CAA3><EFBFBD><EFBFBD><EFBFBD>ֽ<EFBFBD><D6BD><EFBFBD>
std::vector<std::future<ULONG>> futures;
for (int blockY = 0; blockY < N; ++blockY) {
// <20><><EFBFBD>㵱ǰ<E3B5B1><C7B0><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֽ<EFBFBD><D6BD><EFBFBD>
ULONG currentBlockLength = blockLength + (blockY == N - 1 ? remainingLength : 0);
// <20><><EFBFBD>㵱ǰ<E3B5B1><C7B0><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʼλ<CABC><CEBB>
ULONG startPosition = blockY * blockLength;
futures.emplace_back(m_ThreadPool->enqueue([=]() -> ULONG {
LPBYTE srcBlock = srcData + startPosition;
LPBYTE dstBlock = dstData + startPosition;
LPBYTE blockBuffer = m_BlockBuffers[blockY];
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ǰ<EFBFBD><C7B0><EFBFBD>񲢷<EFBFBD><F1B2A2B7>رȶ<D8B1><C8B6><EFBFBD><EFBFBD>ݴ<EFBFBD>С
return m_BlockSizes[blockY] = CompareBitmap(srcBlock, dstBlock, blockBuffer, currentBlockLength, algo, startPosition);
}));
}
// <20>ȴ<EFBFBD><C8B4><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ɲ<EFBFBD><C9B2><EFBFBD>ȡ<EFBFBD><C8A1><EFBFBD><EFBFBD>ֵ
for (auto& future : futures) {
future.get();
}
// <20>ϲ<EFBFBD><CFB2><EFBFBD><EFBFBD>п<EFBFBD><D0BF>IJ<EFBFBD><C4B2><EFBFBD><EFBFBD><EFBFBD>Ϣ<EFBFBD><CFA2> szBuffer
ULONG offset = 0;
for (int blockY = 0; blockY < N; ++blockY) {
memcpy(szBuffer + offset, m_BlockBuffers[blockY], m_BlockSizes[blockY]);
offset += m_BlockSizes[blockY];
}
return offset; // <20><><EFBFBD>ػ<EFBFBD><D8BB><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ĵ<EFBFBD>С
}
virtual int GetFrameID() const {
return m_FrameID;
}
virtual LPBYTE GetFirstBuffer() const {
return m_FirstBuffer;
}
virtual int GetBMPSize() const {
assert(m_BitmapInfor_Full);
return m_BitmapInfor_Full->bmiHeader.biSizeImage;
}
void ToGray(LPBYTE dst, LPBYTE src, int biSizeImage)
{
for (ULONG i = 0; i < biSizeImage; i += 4, dst += 4, src += 4) {
dst[0] = dst[1] = dst[2] = (306 * src[2] + 601 * src[0] + 117 * src[1]) >> 10;
}
}
virtual LPBITMAPINFO ConstructBitmapInfo(int biBitCount, int biWidth, int biHeight)
{
assert(biBitCount == 32);
BITMAPINFO* bmpInfo = (BITMAPINFO*) new BYTE[sizeof(BITMAPINFO)]();
bmpInfo->bmiHeader.biSize = sizeof(BITMAPINFOHEADER);
bmpInfo->bmiHeader.biWidth = biWidth;
bmpInfo->bmiHeader.biHeight = biHeight;
bmpInfo->bmiHeader.biPlanes = 1;
bmpInfo->bmiHeader.biBitCount = 32;
bmpInfo->bmiHeader.biCompression = BI_RGB;
bmpInfo->bmiHeader.biSizeImage = biWidth * biHeight * 4;
return bmpInfo;
}
// <20>㷨+<2B><><EFBFBD><EFBFBD>λ<EFBFBD><CEBB>+<2B><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
virtual LPBYTE GetNextScreenData(ULONG* ulNextSendLength)
{
BYTE algo = m_bAlgorithm;
int frameID = m_FrameID + 1;
bool keyFrame = (frameID % m_GOP == 0);
m_RectBuffer[0] = keyFrame ? TOKEN_KEYFRAME : TOKEN_NEXTSCREEN;
LPBYTE data = m_RectBuffer + 1;
// д<><D0B4>ʹ<EFBFBD><CAB9><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
memcpy(data, (LPBYTE)&algo, sizeof(BYTE));
// д<><D0B4><EFBFBD><EFBFBD><EFBFBD><EFBFBD>λ<EFBFBD><CEBB>
POINT CursorPos;
GetCursorPos(&CursorPos);
CursorPos.x /= m_wZoom;
CursorPos.y /= m_hZoom;
memcpy(data + sizeof(BYTE), (LPBYTE)&CursorPos, sizeof(POINT));
// д<>뵱ǰ<EBB5B1><C7B0><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
static CCursorInfo m_CursorInfor;
BYTE bCursorIndex = m_CursorInfor.getCurrentCursorIndex();
memcpy(data + sizeof(BYTE) + sizeof(POINT), &bCursorIndex, sizeof(BYTE));
ULONG offset = sizeof(BYTE) + sizeof(POINT) + sizeof(BYTE);
// <20>ֶ<EFBFBD>ɨ<EFBFBD><C9A8>ȫ<EFBFBD><C8AB>Ļ <20><><EFBFBD>µ<EFBFBD>λͼ<CEBB><CDBC><EFBFBD>뵽m_hDiffMemDC<44><43>
LPBYTE nextData = ScanNextScreen();
if (nullptr == nextData) {
// ɨ<><C9A8><EFBFBD><EFBFBD>һ֡ʧ<D6A1><CAA7>Ҳ<EFBFBD><D2B2>Ҫ<EFBFBD><D2AA><EFBFBD>͹<EFBFBD><CDB9><EFBFBD><EFBFBD><EFBFBD>Ϣ<EFBFBD><CFA2><EFBFBD><EFBFBD><EFBFBD>ƶ<EFBFBD>
*ulNextSendLength = 1 + offset;
return m_RectBuffer;
}
#if SCREENYSPY_IMPROVE
memcpy(data + offset, &++m_FrameID, sizeof(int));
offset += sizeof(int);
#if SCREENSPY_WRITE
WriteBitmap(m_BitmapInfor_Full, nextData, "GHOST", m_FrameID);
#endif
#else
m_FrameID++;
#endif
if (keyFrame) {
switch (algo) {
case ALGORITHM_DIFF: {
*ulNextSendLength = 1 + offset + m_BitmapInfor_Full->bmiHeader.biSizeImage;
memcpy(data + offset, nextData, m_BitmapInfor_Full->bmiHeader.biSizeImage);
break;
}
case ALGORITHM_GRAY: {
*ulNextSendLength = 1 + offset + m_BitmapInfor_Full->bmiHeader.biSizeImage;
ToGray(data + offset, nextData, m_BitmapInfor_Full->bmiHeader.biSizeImage);
break;
}
case ALGORITHM_H264: {
uint8_t* encoded_data = nullptr;
uint32_t encoded_size = 0;
int err = m_encoder->encode(nextData, 32, 4*m_BitmapInfor_Full->bmiHeader.biWidth,
m_ulFullWidth, m_ulFullHeight, &encoded_data, &encoded_size);
if (err) {
return nullptr;
}
*ulNextSendLength = 1 + offset + encoded_size;
memcpy(data + offset, encoded_data, encoded_size);
break;
}
default:
break;
}
memcpy(GetFirstBuffer(), nextData, m_BitmapInfor_Full->bmiHeader.biSizeImage);
} else {
switch (algo) {
case ALGORITHM_DIFF:
case ALGORITHM_GRAY: {
*ulNextSendLength = 1 + offset + MultiCompareBitmap(nextData, GetFirstBuffer(), data + offset, GetBMPSize(), algo);
break;
}
case ALGORITHM_H264: {
uint8_t* encoded_data = nullptr;
uint32_t encoded_size = 0;
int err = m_encoder->encode(nextData, 32, 4 * m_BitmapInfor_Full->bmiHeader.biWidth,
m_ulFullWidth, m_ulFullHeight, &encoded_data, &encoded_size);
if (err) {
return nullptr;
}
*ulNextSendLength = 1 + offset + encoded_size;
memcpy(data + offset, encoded_data, encoded_size);
break;
}
default:
break;
}
}
return m_RectBuffer;
}
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ļ<EFBFBD><C4BB><EFBFBD><EFBFBD><EFBFBD>
virtual BYTE SetAlgorithm(int algo)
{
BYTE oldAlgo = m_bAlgorithm;
m_bAlgorithm = algo;
return oldAlgo;
}
// <20><><EFBFBD><EFBFBD>λ<EFBFBD><CEBB>ת<EFBFBD><D7AA>
virtual void PointConversion(POINT& pt) const
{
if (m_bZoomed) {
pt.x *= m_wZoom;
pt.y *= m_hZoom;
}
pt.x += m_iScreenX;
pt.y += m_iScreenY;
}
// <20><>ȡλͼ<CEBB><EFBFBD><E1B9B9>Ϣ
virtual const LPBITMAPINFO& GetBIData() const
{
return m_BitmapInfor_Full;
}
public: // <20><><EFBFBD><EFBFBD><EFBFBD>ӿ<EFBFBD>
// <20><>ȡ<EFBFBD><C8A1>һ֡<D2BB><D6A1>Ļ
virtual LPBYTE GetFirstScreenData(ULONG* ulFirstScreenLength) = 0;
// <20><>ȡ<EFBFBD><C8A1>һ֡<D2BB><D6A1>Ļ
virtual LPBYTE ScanNextScreen() = 0;
};