Files
awesome_anti_virus_engine/ai_anti_malware/ml.cpp

840 lines
28 KiB
C++
Raw Normal View History

#include "ml.h"
2025-03-09 03:19:40 +08:00
#include <Windows.h>
#include <array>
#include <limits>
#include <algorithm>
#include <cmath>
#include <functional>
#include <iomanip>
#include <sstream>
#include <cfloat>
2025-03-09 03:19:40 +08:00
#include <filesystem>
// 确保std命名空间中的函数可用
using std::max;
using std::min;
MachineLearning::MachineLearning() {
// 初始化属性列表
_properties = {"has_configuration", "has_debug", "has_exceptions",
"has_exports", "has_imports", "has_nx",
"has_relocations", "has_resources", "has_signatures",
"has_tls", "has_entry_iat", "has_image_base",
"has_delay_imports", "has_rich"};
// 初始化库列表
_libraries = {"libssp-0",
"kernel32",
"user32",
"advapi32",
"oleaut32",
"shell32",
"ole32",
"gdi32",
"comctl32",
"version",
"msvcrt",
"comdlg32",
"shlwapi",
"wininet",
"ws2_32",
"winmm",
"winspool.drv",
"wsock32",
"msvbvm60",
"rpcrt4",
"mpr",
"psapi",
"iphlpapi",
"ntdll",
"msimg32",
"mscoree",
"crypt32",
"gdiplus",
"userenv",
"crtdll",
"oledlg",
"mfc42",
"urlmon",
"imm32",
"rtl100.bpl",
"netapi32",
"wintrust",
"vcl100.bpl",
"vcl50.bpl",
"uxtheme",
"setupapi",
"ntoskrnl.pe",
"msi",
"msvcp60",
"lz32",
"winhttp",
"hal",
"core.bpl",
"rbrcl1416.bpl",
"dbghelp",
"api-ms-win-crt-runtime-l1-1-0",
"api-ms-win-crt-heap-l1-1-0",
"api-ms-win-crt-math-l1-1-0",
"api-ms-win-crt-stdio-l1-1-0",
"api-ms-win-crt-locale-l1-1-0",
"oleacc",
"komponentyd17.bpl",
"job.bpl",
"cam.bpl",
"vcruntime140",
"secur32",
"msvcr100",
"cxeditorsrs17.bpl",
"rasapi32",
"api-ms-win-crt-string-l1-1-0",
"wtsapi32",
"imagehlp",
"msvcp140",
"cnc.bpl",
"indyprotocols190.bpl",
"api-ms-win-crt-convert-l1-1-0",
"msvcr120",
"vcl60.bpl",
"rbrcl210.bpl",
"rtl170.bpl",
"rbide1416.bpl",
"rtl60.bpl",
"vcl170.bpl",
"wldap32",
"shfolder",
"cxlibraryrs17.bpl",
"msvcirt",
"report.bpl",
"rtl190.bpl",
"msvcr90",
"api-ms-win-crt-filesystem-l1-1-0",
"cxeditorsrs16.bpl",
"avifil32",
"api-ms-win-crt-time-l1-1-0",
"jli",
"graphic.bpl",
"olepro32",
"rtl160.bpl",
"spmmachine.bpl",
"cabinet",
"indycore190.bpl",
"sacom210.bpl",
"rbrtl1416.bpl",
"api-ms-win-crt-utility-l1-1-0",
"vcl160.bpl",
"api-ms-win-crt-environment-l1-1-0",
"zcomponent170.bpl",
"msvfw32",
"libadm_coreutils6",
"rbsha",
"dxpscorers16.bpl",
"msacm32",
"vcl70.bpl",
"applicationmanagement.bpl",
"jobgui.bpl",
"indyprotocols170.bpl",
"rtl70.bpl",
"cxed210.bpl",
"msvcr80",
"libadm_coretinypy6",
"ucrtbased",
"vcruntime140d",
"msvcp120",
"msvcp140d",
"dinput8",
"gui.bpl",
"maincontrols.bpl",
"rtl120.bpl",
"jcl170.bpl",
"frx17.bpl",
"fs17.bpl",
"vcl190.bpl",
"sdl2",
"machine.bpl",
"mfc42u",
"normaliz",
"sdl2_gfx",
"sdl2_ttf",
"sdl2_mixer",
"msvcp80",
"cxgridrs17.bpl",
"cxeditorsvcld7.bpl",
"libeay32",
"cxlibraryd11.bpl",
"vcl120.bpl",
"gr32_d6.bpl",
"cxlibraryrs16.bpl",
"cxgridrs16.bpl",
"vcl40.bpl",
"opengl32",
"qt5core",
"qtcore4",
"wdfldr.sys",
"nesting.bpl",
"fltmgr.sys"};
}
MachineLearning::~MachineLearning() {
// 析构函数,清理资源(如有必要)
}
bool MachineLearning::ParseRichHeader(const uint8_t* peBuffer,
RichHeaderInfo& richInfo) {
PIMAGE_DOS_HEADER dosHeader = (PIMAGE_DOS_HEADER)(peBuffer);
// 检查DOS头部有效性
if (!dosHeader || dosHeader->e_magic != IMAGE_DOS_SIGNATURE) {
return false;
}
// 搜索范围是DOS头后到PE头前
const uint32_t* scanPtr =
reinterpret_cast<const uint32_t*>(peBuffer + sizeof(IMAGE_DOS_HEADER));
size_t maxItems =
(dosHeader->e_lfanew - sizeof(IMAGE_DOS_HEADER)) / sizeof(uint32_t);
// 查找DanS标记
size_t dansIndex = 0;
for (; dansIndex < maxItems - 1; dansIndex++) {
if (scanPtr[dansIndex] == 0x536E6144) { // "DanS"
break;
}
}
if (dansIndex >= maxItems - 1) {
return false; // 没找到DanS
}
// 获取校验和
uint32_t checksum = scanPtr[dansIndex + 1];
richInfo.checksum = checksum;
// 找Rich标记
size_t richIndex = 0;
for (richIndex = dansIndex + 2; richIndex < maxItems; richIndex++) {
if ((scanPtr[richIndex] ^ checksum) ==
0x68636952) { // "Rich" ^ checksum
break;
}
}
if (richIndex >= maxItems) {
return false; // 没找到Rich
}
// 解析Rich条目
// DanS之前的数据是Rich条目每个条目占用2个DWORD
size_t entryCount = (richIndex - dansIndex - 2) / 2;
richInfo.entries.reserve(entryCount);
for (size_t i = 0; i < entryCount; i++) {
size_t entryPos = richIndex - 2 * (i + 1);
uint32_t dword1 = scanPtr[entryPos] ^ checksum;
uint32_t dword2 = scanPtr[entryPos + 1] ^ checksum;
RichEntry entry;
entry.productId = dword1 & 0xFFFF; // 低16位是ProductId
entry.buildId = (dword1 >> 16) & 0xFFFF; // 高16位是BuildId
entry.useCount = dword2; // 使用次数
richInfo.entries.push_back(entry);
}
return true;
}
// 添加一个C风格的函数处理SEH部分
auto processImportWithSEH_Internal(const uint8_t* buffer, size_t bufferSize,
char** libNames, size_t* libCount,
size_t maxLibs) -> BOOL {
__try {
// 懒得JB处理了,累了.这里是不安全的
size_t impRva = 0;
size_t count = 0;
IMAGE_DATA_DIRECTORY* impDir =
peconv::get_directory_entry(buffer, IMAGE_DIRECTORY_ENTRY_IMPORT);
if (impDir) {
impRva = impDir->VirtualAddress;
IMAGE_IMPORT_DESCRIPTOR* impDesc =
reinterpret_cast<IMAGE_IMPORT_DESCRIPTOR*>(
RvaToPtr(impRva, (BYTE*)buffer));
while (impDesc && impDesc->Name != 0 && count < maxLibs) {
char* libName = reinterpret_cast<char*>(
RvaToPtr(impDesc->Name, (BYTE*)buffer));
if (libName) {
libNames[count] = libName;
count++;
}
impDesc++;
}
*libCount = count;
return TRUE;
}
return FALSE;
} __except (EXCEPTION_EXECUTE_HANDLER) {
printf("skip file: (access violation)\n");
return FALSE;
}
}
auto processImportWithSEH(const uint8_t* buffer, size_t bufferSize,
std::vector<std::string>& importedLibraries) -> void {
const size_t MAX_LIBS = 1000; // 设置一个合理的最大值
char* libNames[MAX_LIBS] = {0};
size_t libCount = 0;
// 调用处理SEH的内部函数
if (processImportWithSEH_Internal(buffer, bufferSize, libNames, &libCount,
MAX_LIBS)) {
// 将结果转换为C++对象
for (size_t i = 0; i < libCount; i++) {
if (libNames[i]) {
std::string libNameStr = libNames[i];
std::transform(libNameStr.begin(), libNameStr.end(),
libNameStr.begin(),
[](unsigned char c) { return std::tolower(c); });
importedLibraries.push_back(libNameStr);
}
}
}
}
2025-03-09 03:19:40 +08:00
std::vector<double> MachineLearning::ExtractFeatures(const uint8_t* buffer,
size_t bufferSize) {
// 使用libpeconv解析PE文件
size_t v_size = 0;
BYTE* peBuffer = peconv::load_pe_module(const_cast<BYTE*>(buffer),
bufferSize, v_size, false, false);
if (!peBuffer) {
2025-03-09 03:19:40 +08:00
return std::vector<double>();
}
// 解析PE信息
PeInfo peInfo;
std::vector<SectionInfo> sections;
std::vector<std::string> importedLibraries;
std::vector<uint8_t> entrypointBytes;
// 检查是否为64位PE
peInfo.isX64 = peconv::is64bit(peBuffer);
// 获取PE头信息
PIMAGE_NT_HEADERS ntHeaders =
(PIMAGE_NT_HEADERS)peconv::get_nt_hdrs(peBuffer);
if (!ntHeaders) {
peconv::free_pe_buffer(peBuffer);
2025-03-09 03:19:40 +08:00
return std::vector<double>();
}
// 从NT头部获取信息
if (peInfo.isX64) {
// 64位PE文件
PIMAGE_NT_HEADERS64 ntHeaders64 = (PIMAGE_NT_HEADERS64)ntHeaders;
peInfo.addressOfEntryPoint =
ntHeaders64->OptionalHeader.AddressOfEntryPoint;
peInfo.baseOfCode = ntHeaders64->OptionalHeader.BaseOfCode;
peInfo.sizeOfCode = ntHeaders64->OptionalHeader.SizeOfCode;
peInfo.sizeOfImage = ntHeaders64->OptionalHeader.SizeOfImage;
peInfo.sizeOfHeaders = ntHeaders64->OptionalHeader.SizeOfHeaders;
peInfo.characteristics = ntHeaders64->FileHeader.Characteristics;
peInfo.dllCharacteristics =
ntHeaders64->OptionalHeader.DllCharacteristics;
} else {
// 32位PE文件
PIMAGE_NT_HEADERS32 ntHeaders32 = (PIMAGE_NT_HEADERS32)ntHeaders;
peInfo.addressOfEntryPoint =
ntHeaders32->OptionalHeader.AddressOfEntryPoint;
peInfo.baseOfCode = ntHeaders32->OptionalHeader.BaseOfCode;
peInfo.sizeOfCode = ntHeaders32->OptionalHeader.SizeOfCode;
peInfo.sizeOfImage = ntHeaders32->OptionalHeader.SizeOfImage;
peInfo.sizeOfHeaders = ntHeaders32->OptionalHeader.SizeOfHeaders;
peInfo.characteristics = ntHeaders32->FileHeader.Characteristics;
peInfo.dllCharacteristics =
ntHeaders32->OptionalHeader.DllCharacteristics;
}
// 检查PE目录
IMAGE_DATA_DIRECTORY* dataDir = peconv::get_directory_entry(
peBuffer, IMAGE_DIRECTORY_ENTRY_COM_DESCRIPTOR);
peInfo.hasConfiguration = dataDir && dataDir->VirtualAddress != 0;
dataDir =
peconv::get_directory_entry(peBuffer, IMAGE_DIRECTORY_ENTRY_DEBUG);
peInfo.hasDebug = dataDir && dataDir->VirtualAddress != 0;
dataDir =
peconv::get_directory_entry(peBuffer, IMAGE_DIRECTORY_ENTRY_EXCEPTION);
peInfo.hasExceptions = dataDir && dataDir->VirtualAddress != 0;
dataDir =
peconv::get_directory_entry(peBuffer, IMAGE_DIRECTORY_ENTRY_EXPORT);
peInfo.hasExports = dataDir && dataDir->VirtualAddress != 0;
dataDir =
peconv::get_directory_entry(peBuffer, IMAGE_DIRECTORY_ENTRY_IMPORT);
peInfo.hasImports = dataDir && dataDir->VirtualAddress != 0;
// NX标志检查
peInfo.hasNx =
(peInfo.dllCharacteristics & IMAGE_DLLCHARACTERISTICS_NX_COMPAT) != 0;
dataDir =
peconv::get_directory_entry(peBuffer, IMAGE_DIRECTORY_ENTRY_BASERELOC);
peInfo.hasRelocations = dataDir && dataDir->VirtualAddress != 0;
dataDir =
peconv::get_directory_entry(peBuffer, IMAGE_DIRECTORY_ENTRY_RESOURCE);
peInfo.hasResources = dataDir && dataDir->VirtualAddress != 0;
dataDir =
peconv::get_directory_entry(peBuffer, IMAGE_DIRECTORY_ENTRY_SECURITY);
peInfo.hasSignatures = dataDir && dataDir->VirtualAddress != 0;
dataDir = peconv::get_directory_entry(peBuffer, IMAGE_DIRECTORY_ENTRY_TLS);
peInfo.hasTls = dataDir && dataDir->VirtualAddress != 0;
dataDir = peconv::get_directory_entry(peBuffer,
IMAGE_DIRECTORY_ENTRY_DELAY_IMPORT);
peInfo.hasDelayImports = dataDir && dataDir->VirtualAddress != 0;
peInfo.hasImageBase = true; // PE文件都有ImageBase
dataDir = peconv::get_directory_entry(peBuffer, IMAGE_DIRECTORY_ENTRY_IAT);
peInfo.hasEntryIat = dataDir && dataDir->VirtualAddress != 0;
// Rich头部检测 - 安全实现
peInfo.hasRich = false;
PIMAGE_DOS_HEADER dosHeader = reinterpret_cast<PIMAGE_DOS_HEADER>(peBuffer);
if (dosHeader && dosHeader->e_magic == IMAGE_DOS_SIGNATURE) {
// 确保e_lfanew值合理
if (dosHeader->e_lfanew > sizeof(IMAGE_DOS_HEADER) &&
dosHeader->e_lfanew < v_size) { // 确保在PE文件大小范围内
size_t maxLen = dosHeader->e_lfanew - sizeof(IMAGE_DOS_HEADER);
// 确保搜索区域不会太大(预防恶意构造的文件)
const size_t MAX_RICH_SEARCH_SIZE = 1024; // 合理的Rich头最大区域
if (maxLen > MAX_RICH_SEARCH_SIZE) {
maxLen = MAX_RICH_SEARCH_SIZE;
}
// 确保不会越界
if (sizeof(IMAGE_DOS_HEADER) + maxLen <= v_size) {
const uint32_t* richPtr = reinterpret_cast<const uint32_t*>(
peBuffer + sizeof(IMAGE_DOS_HEADER));
// 确保剩余长度至少能容纳一个uint32_t
for (size_t i = 0;
i < maxLen / 4 - 1 && (i + 1) * sizeof(uint32_t) <= maxLen;
i++) {
if (richPtr[i] == 0x68636952) { // "Rich"
peInfo.hasRich = true;
break;
}
}
}
}
}
// 获取导入DLL列表
if (peInfo.hasImports) {
processImportWithSEH(peBuffer, bufferSize, importedLibraries);
}
// 获取节区信息
size_t sectionsCount = peconv::get_sections_count(peBuffer, bufferSize);
for (size_t i = 0; i < sectionsCount; i++) {
PIMAGE_SECTION_HEADER section =
peconv::get_section_hdr(peBuffer, bufferSize, i);
if (!section) continue;
SectionInfo secInfo;
secInfo.characteristics = section->Characteristics;
secInfo.sizeOfRawData = section->SizeOfRawData;
secInfo.virtualSize = section->Misc.VirtualSize;
// 计算节区熵
BYTE* sectionData = RvaToPtr(section->VirtualAddress, peBuffer);
secInfo.entropy =
(sectionData && section->SizeOfRawData > 0)
? CalculateEntropy(sectionData, section->SizeOfRawData)
: 0.0;
sections.push_back(secInfo);
}
// 获取入口点前255字节
if (peInfo.addressOfEntryPoint > 0) {
BYTE* epPtr = RvaToPtr(peInfo.addressOfEntryPoint, peBuffer);
if (epPtr) {
// 确保不会越界
size_t maxBytes =
std::min<size_t>(255, bufferSize - (epPtr - peBuffer));
entrypointBytes.assign(epPtr, epPtr + maxBytes);
}
}
// 提取所有特征
std::vector<double> allFeatures;
// 1. PE段属性
std::vector<double> propFeatures =
EncodeProperties(peInfo, importedLibraries);
allFeatures.insert(allFeatures.end(), propFeatures.begin(),
propFeatures.end());
// 2. 导入DLL检测
std::vector<double> libFeatures = EncodeLibraries(importedLibraries);
allFeatures.insert(allFeatures.end(), libFeatures.begin(),
libFeatures.end());
// 3. 文件熵
double fileEntropy = CalculateEntropy(buffer, bufferSize);
allFeatures.push_back(fileEntropy);
// 4. 入口点前255字节
std::vector<double> epFeatures = EncodeEntrypoint(entrypointBytes);
allFeatures.insert(allFeatures.end(), epFeatures.begin(), epFeatures.end());
// 5. 节区信息
std::vector<double> secFeatures = EncodeSections(sections, peInfo.isX64);
allFeatures.insert(allFeatures.end(), secFeatures.begin(),
secFeatures.end());
// 6. 文件和代码段的比率
double codeRatio =
(peInfo.sizeOfCode > 0 && peInfo.sizeOfImage > 0)
? static_cast<double>(peInfo.sizeOfCode) / peInfo.sizeOfImage
: 0.0;
allFeatures.push_back(codeRatio);
// 7. 节区数量
allFeatures.push_back(static_cast<double>(sections.size()));
// 清理资源
peconv::free_pe_buffer(peBuffer);
2025-03-09 03:19:40 +08:00
return allFeatures;
}
std::vector<double> MachineLearning::EncodeProperties(
const PeInfo& peInfo, const std::vector<std::string>& dllTables) {
std::vector<double> features;
// 添加各属性的布尔值转为double: 1.0=true, 0.0=false
features.push_back(peInfo.hasConfiguration ? 1.0 : 0.0);
features.push_back(peInfo.hasDebug ? 1.0 : 0.0);
features.push_back(peInfo.hasExceptions ? 1.0 : 0.0);
features.push_back(peInfo.hasExports ? 1.0 : 0.0);
features.push_back(peInfo.hasImports ? 1.0 : 0.0);
features.push_back(peInfo.hasNx ? 1.0 : 0.0);
features.push_back(peInfo.hasRelocations ? 1.0 : 0.0);
features.push_back(peInfo.hasResources ? 1.0 : 0.0);
features.push_back(peInfo.hasSignatures ? 1.0 : 0.0);
features.push_back(peInfo.hasTls ? 1.0 : 0.0);
features.push_back(peInfo.hasEntryIat ? 1.0 : 0.0);
features.push_back(peInfo.hasImageBase ? 1.0 : 0.0);
features.push_back(peInfo.hasDelayImports ? 1.0 : 0.0);
features.push_back(peInfo.hasRich ? 1.0 : 0.0);
return features;
}
std::vector<double> MachineLearning::EncodeEntrypoint(
const std::vector<uint8_t>& epBytes) {
std::vector<double> features;
// 原始字节转为浮点值按Python代码中的normalize处理
for (const auto& byte : epBytes) {
features.push_back(static_cast<double>(byte) / 255.0);
}
// 填充至64字节长度
while (features.size() < 64) {
features.push_back(0.0);
}
return features;
}
std::vector<double> MachineLearning::EncodeHistogram(const uint8_t* data,
size_t size) {
std::vector<double> features(256, 0.0);
if (data && size > 0) {
// 统计字节频率
for (size_t i = 0; i < size; i++) {
features[data[i]]++;
}
// 归一化频率
for (auto& freq : features) {
freq /= static_cast<double>(size);
}
}
return features;
}
std::vector<double> MachineLearning::EncodeLibraries(
const std::vector<std::string>& importedLibraries) {
std::vector<double> features(_libraries.size(), 0.0);
// 检查每个库是否被导入
for (size_t i = 0; i < _libraries.size(); i++) {
const std::string& lib = _libraries[i];
for (const auto& imported : importedLibraries) {
if (imported.find(lib) != std::string::npos) {
features[i] = 1.0;
break;
}
}
}
return features;
}
std::vector<double> MachineLearning::EncodeSections(
const std::vector<SectionInfo>& sections, bool isX64) {
std::vector<double> features;
size_t numSections = sections.size();
if (numSections == 0) {
return std::vector<double>(5, 0.0); // 返回全零特征
}
// 计算熵特征
double totalEntropy = 0.0;
double maxEntropy = 0.0;
for (const auto& sec : sections) {
totalEntropy += sec.entropy;
if (sec.entropy > maxEntropy) {
maxEntropy = sec.entropy;
}
}
double avgEntropy = totalEntropy / numSections;
double normAvgEntropy = (maxEntropy > 0) ? avgEntropy / maxEntropy : 0.0;
// 计算大小比率
double maxSize = 0.0;
double minVSize = DBL_MAX;
for (const auto& sec : sections) {
if (static_cast<double>(sec.sizeOfRawData) > maxSize) {
maxSize = static_cast<double>(sec.sizeOfRawData);
}
if (sec.virtualSize > 0 &&
static_cast<double>(sec.virtualSize) < minVSize) {
minVSize = static_cast<double>(sec.virtualSize);
}
}
// 根据PE文件类型调整计算方式
double normSize = 0.0;
if (minVSize > 0 && minVSize != DBL_MAX) {
if (isX64) {
// 64位PE文件可能有更大的对齐要求
normSize = maxSize / (minVSize * 2.0);
} else {
// 32位PE文件的处理方式
normSize = maxSize / minVSize;
}
}
// 返回特征
features.push_back(static_cast<double>(numSections));
features.push_back(avgEntropy);
features.push_back(maxEntropy);
features.push_back(normAvgEntropy);
features.push_back(normSize);
return features;
}
double MachineLearning::CalculateEntropy(const uint8_t* data, size_t size) {
// 基本参数检查
if (!data || size == 0) {
return 0.0;
}
// 添加合理性检查防止过大的size造成计算问题或DoS攻击
// 通常PE文件不应超过一定大小这里设置上限为2GB
constexpr size_t MAX_SAFE_SIZE = 2ULL * 1024 * 1024 * 1024; // 2GB
if (size > MAX_SAFE_SIZE) {
return 0.0;
}
std::array<double, 256> frequencies = {};
__try {
// 懒得JB处理了,累了.这里是不安全的
// 统计每个字节的频率
for (size_t i = 0; i < size; i++) {
uint8_t byteValue = data[i];
frequencies[byteValue] += 1.0;
}
} __except (EXCEPTION_EXECUTE_HANDLER) {
printf("skip file: (access violation)\n");
}
// 计算香农熵
double entropy = 0.0;
for (const auto& freq : frequencies) {
if (freq > 0) {
double p = freq / static_cast<double>(size);
entropy -= p * std::log2(p);
}
}
return entropy;
}
bool MachineLearning::ExportToCSV(const std::vector<double>& features,
const std::string& outputPath) {
std::ofstream outFile(outputPath);
if (!outFile.is_open()) {
std::cerr << "无法打开输出文件: " << outputPath << std::endl;
return false;
}
// 写入特征
for (size_t i = 0; i < features.size(); i++) {
outFile << std::fixed << std::setprecision(6) << features[i];
if (i < features.size() - 1) {
outFile << ",";
}
}
outFile << std::endl;
outFile.close();
return true;
}
int MachineLearning::GetOpcodeType(const void* code, bool isX64) {
// 此函数未使用,但保留实现接口
return 0;
}
std::tuple<std::vector<double>, std::vector<int>>
MachineLearning::GetOpcodeStatistics(const uint8_t* data, size_t dataSize,
bool isX64, const PeInfo& peInfo) {
// 此函数未使用,但保留实现接口
return std::make_tuple(std::vector<double>(), std::vector<int>());
2025-03-09 03:19:40 +08:00
}
std::vector<uint8_t> MachineLearning::ReadFileToBuffer(
const std::string& filePath) {
std::ifstream fileStream(filePath, std::ios::binary | std::ios::ate);
if (!fileStream.is_open()) {
std::cerr << "无法打开文件: " << filePath << std::endl;
return std::vector<uint8_t>();
}
// 获取文件大小
std::streamsize fileSize = fileStream.tellg();
fileStream.seekg(0, std::ios::beg);
// 分配缓冲区并读取文件
std::vector<uint8_t> buffer(fileSize);
if (!fileStream.read(reinterpret_cast<char*>(buffer.data()), fileSize)) {
std::cerr << "读取文件失败: " << filePath << std::endl;
return std::vector<uint8_t>();
}
return buffer;
}
bool MachineLearning::ProcessDirectory(const std::string& directoryPath,
const std::string& outputCsvPath) {
// 打开CSV文件用于写入
std::ofstream csvFile(outputCsvPath);
if (!csvFile.is_open()) {
std::cerr << "无法创建CSV文件: " << outputCsvPath << std::endl;
return false;
}
/*
// 写入CSV标题行
csvFile << "文件路径";
for (size_t i = 0; i < _properties.size(); i++) {
csvFile << ",属性_" << i;
}
for (size_t i = 0; i < _libraries.size(); i++) {
csvFile << ",库_" << i;
}
csvFile << ",文件熵";
for (size_t i = 0; i < 64; i++) { // 前64个字节特征
csvFile << ",EP_" << i;
}
csvFile << ",节区数";
csvFile << ",平均熵";
csvFile << ",最大熵";
csvFile << ",归一化平均熵";
csvFile << ",节区大小比率";
csvFile << ",代码比率";
csvFile << ",节区计数";
csvFile << std::endl;
*/
// 递归遍历目录
WIN32_FIND_DATAA findData;
std::string searchPath = directoryPath + "\\*";
HANDLE hFind = FindFirstFileA(searchPath.c_str(), &findData);
if (hFind == INVALID_HANDLE_VALUE) {
std::cerr << "无法访问目录: " << directoryPath << std::endl;
csvFile.close();
return false;
}
int processedCount = 0;
int failedCount = 0;
do {
// 跳过 "." 和 ".." 目录
if (strcmp(findData.cFileName, ".") == 0 ||
strcmp(findData.cFileName, "..") == 0) {
continue;
}
std::string currentPath = directoryPath + "\\" + findData.cFileName;
if (findData.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) {
// 递归处理子目录
ProcessDirectory(currentPath, outputCsvPath);
} else {
// 处理文件
std::vector<uint8_t> fileBuffer = ReadFileToBuffer(currentPath);
if (fileBuffer.empty()) {
std::cerr << "skip file: " << currentPath << " (read failed)"
2025-03-09 03:19:40 +08:00
<< std::endl;
failedCount++;
continue;
}
// 提取特征
std::vector<double> features =
ExtractFeatures(fileBuffer.data(), fileBuffer.size());
if (features.empty()) {
std::cerr << "skip file: " << currentPath
<< " (can't get feature)" << std::endl;
2025-03-09 03:19:40 +08:00
failedCount++;
continue;
}
// 写入CSV
csvFile << currentPath;
for (const auto& feature : features) {
csvFile << "," << std::fixed << std::setprecision(6) << feature;
}
csvFile << std::endl;
processedCount++;
if (processedCount % 100 == 0) {
std::cout << "a ready processed " << processedCount
<< " files..." << std::endl;
2025-03-09 03:19:40 +08:00
}
}
} while (FindNextFileA(hFind, &findData));
FindClose(hFind);
csvFile.close();
printf("ML Process Result, success count: %d fail count: %d \n",
processedCount, failedCount);
return true;
}