Files
awesome_anti_virus_engine/ai_anti_malware/sandbox_api_emu.cpp

2438 lines
87 KiB
C++
Raw Normal View History

2025-03-06 18:39:01 +08:00
#include "sandbox.h"
2025-03-07 01:47:01 +08:00
#include "sandbox_callbacks.h"
2025-03-06 18:39:01 +08:00
std::string getDllNameFromApiSetMap(const std::string& apiSet);
auto Api_QueryPerformanceCounter(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t return_params_address = 0;
LARGE_INTEGER data;
BOOL origin_return_value = QueryPerformanceCounter(&data);
if (context->GetPeInfo()->isX64) {
uc_reg_read(uc, UC_X86_REG_RCX, &return_params_address);
} else {
uint64_t ebp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &ebp_address);
ebp_address += 0x4;
uc_mem_read(uc, ebp_address, &return_params_address, 0x4);
}
uc_mem_write(uc, return_params_address, &data, sizeof(LARGE_INTEGER));
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&origin_return_value);
}
auto Api_GetSystemTimeAsFileTime(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
uint64_t rcx;
FILETIME file_time;
GetSystemTimeAsFileTime(&file_time);
uc_reg_read(uc, UC_X86_REG_RCX, &rcx);
uc_mem_write(uc, rcx, &file_time, sizeof(FILETIME));
}
void Api_GetCurrentThreadId(void* sandbox, uc_engine* uc, uint64_t address) {
auto context = static_cast<Sandbox*>(sandbox);
if (context->GetPeInfo()->isX64) {
uc_reg_write(uc, UC_X86_REG_RAX,
&context->GetTeb64()->ClientId.UniqueThread);
} else {
uc_reg_write(uc, UC_X86_REG_RAX,
&context->GetTeb32()->ClientId.UniqueThread);
}
}
void Api_GetCurrentProcessId(void* sandbox, uc_engine* uc, uint64_t address) {
auto context = static_cast<Sandbox*>(sandbox);
if (context->GetPeInfo()->isX64) {
uc_reg_write(uc, UC_X86_REG_RAX,
&context->GetTeb64()->ClientId.UniqueProcess);
} else {
uc_reg_write(uc, UC_X86_REG_RAX,
&context->GetTeb32()->ClientId.UniqueProcess);
}
}
auto Api_LoadLibraryA(void* sandbox, uc_engine* uc, uint64_t address) -> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t params_address = 0;
// 获取参数地址
if (context->GetPeInfo()->isX64) {
uc_reg_read(uc, UC_X86_REG_RCX, &params_address);
} else {
uint64_t ebp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &ebp_address);
ebp_address += 0x4;
uc_mem_read(uc, ebp_address, &params_address, 0x4);
}
uint64_t return_address = 0;
std::string module_name;
char buffer[MAX_PATH];
size_t i = 0;
// 读取模块名称
if (params_address != 0) {
do {
uint8_t byte;
uc_mem_read(uc, params_address + i, &byte, 1);
buffer[i] = byte;
i++;
} while (buffer[i - 1] != 0 && i < MAX_PATH);
if (i > 0 && i < MAX_PATH) {
module_name = std::string(buffer);
// 确保模块名以.dll结尾不区分大小写
if (module_name.length() > 4) {
std::string ext = module_name.substr(module_name.length() - 4);
if (_stricmp(ext.c_str(), ".dll") != 0) {
module_name += ".dll";
}
} else {
module_name += ".dll";
}
std::string fuck_up_api_ms = module_name;
if (fuck_up_api_ms.find("api-ms-") != std::string::npos) {
module_name = getDllNameFromApiSetMap(fuck_up_api_ms);
if (module_name.size() <= 1) __debugbreak();
}
// 从模块列表中查找对应模块
for (const auto& module : context->GetModuleList()) {
if (_stricmp((*module).name, module_name.c_str()) == 0) {
return_address = (*module).base;
break;
}
}
}
}
printf("[*] LoadLibraryA: Module=%s, Base=0x%llx\n", module_name.c_str(),
return_address);
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&return_address);
}
auto Api_LoadLibraryExW(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t module_name_address = 0;
uint64_t flags = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = lpLibFileName, r8 = dwFlags
uc_reg_read(uc, UC_X86_REG_RCX, &module_name_address);
uc_reg_read(uc, UC_X86_REG_R8, &flags);
} else {
// x86: 从栈上读取参数
uint64_t esp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &module_name_address, 0x4);
esp_address += 0x8; // 跳过hFile参数
uc_mem_read(uc, esp_address, &flags, 0x4);
}
uint64_t return_address = 0;
std::wstring module_name;
wchar_t buffer[MAX_PATH];
size_t i = 0;
bool isApiSetMapMeme = false;
// 读取宽字符模块名称
if (module_name_address != 0) {
do {
uint16_t wchar;
uc_mem_read(uc, module_name_address + (i * 2), &wchar, 2);
buffer[i] = wchar;
i++;
} while (buffer[i - 1] != 0 && i < MAX_PATH);
if (i > 0 && i < MAX_PATH) {
module_name = std::wstring(buffer);
std::string ansi_name(module_name.begin(), module_name.end());
std::string fuck_up_api_ms = ansi_name;
if (ansi_name.length() > 4) {
std::string ext = ansi_name.substr(ansi_name.length() - 4);
if (_stricmp(ext.c_str(), ".dll") != 0) {
ansi_name += ".dll";
}
} else {
ansi_name += ".dll";
}
if (ansi_name.find("api-ms-") != std::string::npos) {
ansi_name = getDllNameFromApiSetMap(ansi_name);
isApiSetMapMeme = true;
// if (ansi_name.size() <= 1) __debugbreak();
}
// 从模块列表中查找对应模块
for (const auto& module : context->GetModuleList()) {
if (_stricmp((*module).name, ansi_name.c_str()) == 0) {
return_address = (*module).base;
break;
}
}
}
}
printf("[*] LoadLibraryExW: Module=%ls, Flags=0x%llx, Base=0x%llx\n",
module_name.c_str(), flags, return_address);
if (return_address == 0 && isApiSetMapMeme) {
// 找不到就不管他了,操
return_address = 0x1337;
}
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&return_address);
}
void Api_GetLastError(void* sandbox, uc_engine* uc, uint64_t address) {
auto context = static_cast<Sandbox*>(sandbox);
DWORD last_error = 0;
// 从TEB中获取LastError
if (context->GetPeInfo()->isX64) {
last_error = context->GetTeb64()->LastErrorValue;
} else {
last_error = context->GetTeb32()->LastErrorValue;
}
printf("[*] GetLastError: LastError=0x%x\n", last_error);
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&last_error);
}
auto Api_InitializeCriticalSectionAndSpinCount(void* sandbox, uc_engine* uc,
uint64_t address) -> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t lpCriticalSection = 0;
uint32_t dwSpinCount = 0;
BOOL success = TRUE; // 默认返回成功
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = lpCriticalSection, rdx = dwSpinCount
uc_reg_read(uc, UC_X86_REG_RCX, &lpCriticalSection);
uint64_t temp_spin_count = 0;
uc_reg_read(uc, UC_X86_REG_RDX, &temp_spin_count);
dwSpinCount = static_cast<uint32_t>(temp_spin_count);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uint32_t temp_cs = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &temp_cs, sizeof(uint32_t));
lpCriticalSection = temp_cs;
esp_address += 0x4;
uc_mem_read(uc, esp_address, &dwSpinCount, sizeof(uint32_t));
}
if (lpCriticalSection != 0) {
// 初始化关键段结构
RTL_CRITICAL_SECTION cs = {0};
cs.LockCount = -1; // 初始未锁定状态
cs.RecursionCount = 0; // 初始递归计数为0
cs.SpinCount = dwSpinCount; // 设置自旋计数
cs.OwningThread = 0; // 初始无拥有线程
cs.LockSemaphore = 0; // 初始信号量为0
// 写入初始化后的结构到目标内存
uc_mem_write(uc, lpCriticalSection, &cs, sizeof(RTL_CRITICAL_SECTION));
} else {
success = FALSE;
// 设置LastError
DWORD error = ERROR_INVALID_PARAMETER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
}
printf(
"[*] InitializeCriticalSectionAndSpinCount: CS=0x%llx, SpinCount=0x%x, "
"Success=%d\n",
lpCriticalSection, dwSpinCount, success);
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&success);
}
auto Api_TlsAlloc(void* sandbox, uc_engine* uc, uint64_t address) -> void {
auto context = static_cast<Sandbox*>(sandbox);
DWORD tls_index = TLS_OUT_OF_INDEXES; // 默认返回失败值
// 获取TEB结构
if (context->GetPeInfo()->isX64) {
auto teb = context->GetTeb64();
// 在TLS槽中查找第一个可用的位置
for (DWORD i = 0; i < 64; i++) { // TEB中TlsSlots数组大小为64
2025-03-06 20:08:12 +08:00
if (teb->TlsSlots[i] == (void*)0x1337ffffff) {
teb->TlsSlots[i] = (void*)0; // 标记为已使用
2025-03-06 18:39:01 +08:00
tls_index = i;
break;
}
}
} else {
auto teb = context->GetTeb32();
// 在TLS槽中查找第一个可用的位置
for (DWORD i = 0; i < 64; i++) { // TEB中TlsSlots数组大小为64
2025-03-06 20:08:12 +08:00
if (teb->TlsSlots[i] == 0x1337) {
teb->TlsSlots[i] = 0; // 标记为已使用
2025-03-06 18:39:01 +08:00
tls_index = i;
break;
}
}
}
if (tls_index == TLS_OUT_OF_INDEXES) {
// 设置LastError为没有可用的TLS索引
DWORD error = ERROR_NO_MORE_ITEMS;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
}
printf("[*] TlsAlloc: Allocated TLS Index=0x%x\n", tls_index);
// 返回分配的TLS索引
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&tls_index);
}
auto Api_TlsSetValue(void* sandbox, uc_engine* uc, uint64_t address) -> void {
auto context = static_cast<Sandbox*>(sandbox);
uint32_t dwTlsIndex = 0;
uint64_t lpTlsValue = 0;
BOOL success = FALSE;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = dwTlsIndex, rdx = lpTlsValue
uint64_t temp_index;
uc_reg_read(uc, UC_X86_REG_RCX, &temp_index);
dwTlsIndex = static_cast<uint32_t>(temp_index);
uc_reg_read(uc, UC_X86_REG_RDX, &lpTlsValue);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &dwTlsIndex, sizeof(uint32_t));
esp_address += 0x4;
uint32_t temp_value;
uc_mem_read(uc, esp_address, &temp_value, sizeof(uint32_t));
lpTlsValue = temp_value;
}
// 检查索引是否有效小于64
if (dwTlsIndex < 64) {
if (context->GetPeInfo()->isX64) {
auto teb = context->GetTeb64();
// 检查槽是否已分配不为nullptr
2025-03-06 20:08:12 +08:00
if (teb->TlsSlots[dwTlsIndex] != (void*)0x1337ffffff) {
2025-03-06 18:39:01 +08:00
teb->TlsSlots[dwTlsIndex] = (void*)lpTlsValue;
success = TRUE;
}
} else {
auto teb = context->GetTeb32();
// 检查槽是否已分配不为0
2025-03-06 20:08:12 +08:00
if (teb->TlsSlots[dwTlsIndex] != 0x1337) {
2025-03-06 18:39:01 +08:00
teb->TlsSlots[dwTlsIndex] = static_cast<uint32_t>(lpTlsValue);
success = TRUE;
}
}
}
if (!success) {
// 设置LastError
DWORD error = ERROR_INVALID_PARAMETER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
}
printf("[*] TlsSetValue: Index=0x%x, Value=0x%llx, Success=%d\n",
dwTlsIndex, lpTlsValue, success);
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&success);
}
auto Api_DeleteCriticalSection(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t lpCriticalSection = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = lpCriticalSection
uc_reg_read(uc, UC_X86_REG_RCX, &lpCriticalSection);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uint32_t temp_cs = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &temp_cs, sizeof(uint32_t));
lpCriticalSection = temp_cs;
}
if (lpCriticalSection != 0) {
// 读取现有的关键段结构
RTL_CRITICAL_SECTION cs;
uc_mem_read(uc, lpCriticalSection, &cs, sizeof(RTL_CRITICAL_SECTION));
// 检查是否有线程仍在等待
if (cs.LockCount >= 0) {
// 有线程正在等待,设置错误
DWORD error = ERROR_SEM_IS_SET;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
}
// 清零内存,表示删除
memset(&cs, 0, sizeof(RTL_CRITICAL_SECTION));
uc_mem_write(uc, lpCriticalSection, &cs, sizeof(RTL_CRITICAL_SECTION));
}
printf("[*] DeleteCriticalSection: CS=0x%llx\n", lpCriticalSection);
}
auto Api_IsProcessorFeaturePresent(void* sandbox, uc_engine* uc,
uint64_t address) -> void {
auto context = static_cast<Sandbox*>(sandbox);
uint32_t feature_number = 0;
BOOL is_supported = FALSE;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = FeatureNumber
uint64_t temp_feature;
uc_reg_read(uc, UC_X86_REG_RCX, &temp_feature);
feature_number = static_cast<uint32_t>(temp_feature);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &feature_number, sizeof(uint32_t));
}
// 模拟一些常见的处理器特性
switch (feature_number) {
case PF_FLOATING_POINT_PRECISION_ERRATA: // 0
is_supported = FALSE;
break;
case PF_FLOATING_POINT_EMULATED: // 1
is_supported = FALSE;
break;
case PF_COMPARE_EXCHANGE_DOUBLE: // 2
is_supported = TRUE;
break;
case PF_MMX_INSTRUCTIONS_AVAILABLE: // 3
is_supported = TRUE;
break;
case PF_XMMI_INSTRUCTIONS_AVAILABLE: // 6
is_supported = TRUE;
break;
case PF_3DNOW_INSTRUCTIONS_AVAILABLE: // 7
is_supported = FALSE;
break;
case PF_RDTSC_INSTRUCTION_AVAILABLE: // 8
is_supported = TRUE;
break;
case PF_PAE_ENABLED: // 9
is_supported = TRUE;
break;
case PF_XMMI64_INSTRUCTIONS_AVAILABLE: // 10
is_supported = TRUE;
break;
case PF_SSE_DAZ_MODE_AVAILABLE: // 11
is_supported = TRUE;
break;
case PF_NX_ENABLED: // 12
is_supported = TRUE;
break;
case PF_SSE3_INSTRUCTIONS_AVAILABLE: // 13
is_supported = TRUE;
break;
case PF_COMPARE_EXCHANGE128: // 14
is_supported = TRUE;
break;
case PF_XSAVE_ENABLED: // 17
is_supported = TRUE;
break;
case PF_ARM_VFP_32_REGISTERS_AVAILABLE: // 18
is_supported = FALSE;
break;
default:
is_supported = FALSE;
break;
}
printf("[*] IsProcessorFeaturePresent: Feature=0x%x, Supported=%d\n",
feature_number, is_supported);
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&is_supported);
}
auto Api_GetProcAddress(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t moduleHandle = 0;
uint64_t functionNameAddr = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = hModule, rdx = lpProcName
uc_reg_read(uc, UC_X86_REG_RCX, &moduleHandle);
uc_reg_read(uc, UC_X86_REG_RDX, &functionNameAddr);
} else {
// x86: 从栈上读取参数
uint64_t esp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uint32_t temp_handle = 0;
uint32_t temp_name_addr = 0;
uc_mem_read(uc, esp_address, &temp_handle, sizeof(uint32_t));
uc_mem_read(uc, esp_address + 0x4, &temp_name_addr, sizeof(uint32_t));
moduleHandle = temp_handle;
functionNameAddr = temp_name_addr;
}
uint64_t return_address = 0;
// 读取函数名
if (functionNameAddr == 0) {
__debugbreak();
}
// 通过名称查找
char functionName[256] = {0};
size_t i = 0;
do {
uint8_t byte;
uc_mem_read(uc, functionNameAddr + i, &byte, 1);
functionName[i] = byte;
i++;
} while (functionName[i - 1] != 0 && i < sizeof(functionName));
// 在模块列表中查找对应模块
for (const auto& module : context->GetModuleList()) {
if (module->base == moduleHandle) {
// 遍历导出函数查找对应名称
for (const auto& exp : module->export_function) {
// 使用 _stricmp 进行大小写不敏感的比较
if (_stricmp(exp->name, functionName) == 0) {
return_address = module->base + exp->function_address;
break;
}
}
break;
}
}
printf("[*] GetProcAddress: Module=0x%llx, Function=%s, Address=0x%llx\n",
moduleHandle, functionName, return_address);
// 设置返回值
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&return_address);
}
auto Api_GetProcessHeap(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
// 返回默认堆句柄(使用堆基址作为句柄)
uint64_t heap_handle =
context->GetPeInfo()->isX64 ? HEAP_ADDRESS_64 : HEAP_ADDRESS_32;
printf("[*] GetProcessHeap: Handle=0x%llx\n", heap_handle);
// 返回堆句柄
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&heap_handle);
}
// 实现HeapAlloc API
auto Api_HeapAlloc(void* sandbox, uc_engine* uc, uint64_t address) -> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t hHeap = 0;
uint32_t dwFlags = 0;
uint64_t dwBytes = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = hHeap, rdx = dwFlags, r8 = dwBytes
uc_reg_read(uc, UC_X86_REG_RCX, &hHeap);
uint64_t temp_flags;
uc_reg_read(uc, UC_X86_REG_RDX, &temp_flags);
dwFlags = static_cast<uint32_t>(temp_flags);
uc_reg_read(uc, UC_X86_REG_R8, &dwBytes);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uint32_t temp_heap;
uc_mem_read(uc, esp_address, &temp_heap, sizeof(uint32_t));
hHeap = temp_heap;
esp_address += 0x4;
uc_mem_read(uc, esp_address, &dwFlags, sizeof(uint32_t));
esp_address += 0x4;
uint32_t temp_bytes;
uc_mem_read(uc, esp_address, &temp_bytes, sizeof(uint32_t));
dwBytes = temp_bytes;
}
// 检查堆句柄是否有效
uint64_t expected_handle =
context->GetPeInfo()->isX64 ? HEAP_ADDRESS_64 : HEAP_ADDRESS_32;
if (hHeap != expected_handle) {
uint64_t null_ptr = 0;
uc_reg_write(
uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&null_ptr);
return;
}
// 获取或创建堆段
HeapSegment* segment = nullptr;
auto it = context->m_heapSegments.find(hHeap);
if (it == context->m_heapSegments.end()) {
segment = context->CreateHeapSegment(
hHeap, context->GetPeInfo()->isX64 ? HEAP_SIZE_64 : HEAP_SIZE_32);
context->m_heapSegments[hHeap] = segment;
} else {
segment = it->second;
}
// 分配内存
uint64_t allocated_address = context->AllocateFromSegment(segment, dwBytes);
printf(
"[*] HeapAlloc: Handle=0x%llx, Flags=0x%x, Size=0x%llx, "
"Address=0x%llx\n",
hHeap, dwFlags, dwBytes, allocated_address);
// 返回分配的地址
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&allocated_address);
}
// 实现HeapFree API
auto Api_HeapFree(void* sandbox, uc_engine* uc, uint64_t address) -> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t hHeap = 0;
uint32_t dwFlags = 0;
uint64_t lpMem = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = hHeap, rdx = dwFlags, r8 = lpMem
uc_reg_read(uc, UC_X86_REG_RCX, &hHeap);
uint64_t temp_flags;
uc_reg_read(uc, UC_X86_REG_RDX, &temp_flags);
dwFlags = static_cast<uint32_t>(temp_flags);
uc_reg_read(uc, UC_X86_REG_R8, &lpMem);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uint32_t temp_heap;
uc_mem_read(uc, esp_address, &temp_heap, sizeof(uint32_t));
hHeap = temp_heap;
esp_address += 0x4;
uc_mem_read(uc, esp_address, &dwFlags, sizeof(uint32_t));
esp_address += 0x4;
uint32_t temp_mem;
uc_mem_read(uc, esp_address, &temp_mem, sizeof(uint32_t));
lpMem = temp_mem;
}
// 释放内存
bool success = context->FreeBlock(lpMem);
printf(
"[*] HeapFree: Handle=0x%llx, Flags=0x%x, Address=0x%llx, Success=%d\n",
hHeap, dwFlags, lpMem, success);
// 返回操作是否成功
uint64_t result = success ? 1 : 0;
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
}
// 实现TlsGetValue API
auto Api_TlsGetValue(void* sandbox, uc_engine* uc, uint64_t address) -> void {
auto context = static_cast<Sandbox*>(sandbox);
uint32_t dwTlsIndex = 0;
uint64_t return_value = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = dwTlsIndex
uint64_t temp_index;
uc_reg_read(uc, UC_X86_REG_RCX, &temp_index);
dwTlsIndex = static_cast<uint32_t>(temp_index);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &dwTlsIndex, sizeof(uint32_t));
}
// 检查索引是否有效小于64
if (dwTlsIndex < 64) {
if (context->GetPeInfo()->isX64) {
auto teb = context->GetTeb64();
// 检查槽是否已分配不为nullptr
2025-03-06 20:08:12 +08:00
if (teb->TlsSlots[dwTlsIndex] != (void*)0x1337ffffff) {
2025-03-06 18:39:01 +08:00
return_value =
reinterpret_cast<uint64_t>(teb->TlsSlots[dwTlsIndex]);
} else {
// 槽未分配设置LastError
DWORD error = ERROR_INVALID_PARAMETER;
teb->LastErrorValue = error;
}
} else {
auto teb = context->GetTeb32();
// 检查槽是否已分配不为0
2025-03-06 20:08:12 +08:00
if (teb->TlsSlots[dwTlsIndex] != 0x1337) {
2025-03-06 18:39:01 +08:00
return_value = teb->TlsSlots[dwTlsIndex];
} else {
// 槽未分配设置LastError
DWORD error = ERROR_INVALID_PARAMETER;
teb->LastErrorValue = error;
}
}
} else {
// 索引无效设置LastError
DWORD error = ERROR_INVALID_PARAMETER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
}
printf("[*] TlsGetValue: Index=0x%x, Value=0x%llx\n", dwTlsIndex,
return_value);
// 返回TLS槽中的值
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&return_value);
}
auto Api_SetLastError(void* sandbox, uc_engine* uc, uint64_t address) -> void {
auto context = static_cast<Sandbox*>(sandbox);
uint32_t dwErrCode = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = dwErrCode
uint64_t temp_error;
uc_reg_read(uc, UC_X86_REG_RCX, &temp_error);
dwErrCode = static_cast<uint32_t>(temp_error);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &dwErrCode, sizeof(uint32_t));
}
// 设置LastError值
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = dwErrCode;
} else {
context->GetTeb32()->LastErrorValue = dwErrCode;
}
printf("[*] SetLastError: Error=0x%x\n", dwErrCode);
}
auto Api_EnterCriticalSection(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t lpCriticalSection = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = lpCriticalSection
uc_reg_read(uc, UC_X86_REG_RCX, &lpCriticalSection);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uint32_t temp_cs = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &temp_cs, sizeof(uint32_t));
lpCriticalSection = temp_cs;
}
if (lpCriticalSection != 0) {
RTL_CRITICAL_SECTION cs;
uc_mem_read(uc, lpCriticalSection, &cs, sizeof(RTL_CRITICAL_SECTION));
// 获取当前线程ID
HANDLE currentThreadHandle = nullptr;
if (context->GetPeInfo()->isX64) {
currentThreadHandle =
(HANDLE)(ULONG_PTR)context->GetTeb64()->ClientId.UniqueThread;
} else {
currentThreadHandle =
(HANDLE)(ULONG_PTR)context->GetTeb32()->ClientId.UniqueThread;
}
// 如果当前线程已经拥有锁,增加递归计数
if (cs.OwningThread == currentThreadHandle) {
cs.RecursionCount++;
} else {
// 如果没有线程拥有锁,获取它
if (cs.LockCount == -1) {
cs.OwningThread = currentThreadHandle;
cs.RecursionCount = 1;
cs.LockCount = 0;
} else {
// 在实际情况下这里应该自旋等待,但在模拟环境中我们直接获取锁
cs.OwningThread = currentThreadHandle;
cs.RecursionCount = 1;
cs.LockCount++;
}
}
// 写回更新后的关键段结构
uc_mem_write(uc, lpCriticalSection, &cs, sizeof(RTL_CRITICAL_SECTION));
}
printf("[*] EnterCriticalSection: CS=0x%llx\n", lpCriticalSection);
}
auto Api_LeaveCriticalSection(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t lpCriticalSection = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = lpCriticalSection
uc_reg_read(uc, UC_X86_REG_RCX, &lpCriticalSection);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uint32_t temp_cs = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &temp_cs, sizeof(uint32_t));
lpCriticalSection = temp_cs;
}
if (lpCriticalSection != 0) {
RTL_CRITICAL_SECTION cs;
uc_mem_read(uc, lpCriticalSection, &cs, sizeof(RTL_CRITICAL_SECTION));
// 获取当前线程ID
HANDLE currentThreadHandle = nullptr;
if (context->GetPeInfo()->isX64) {
currentThreadHandle =
(HANDLE)(ULONG_PTR)context->GetTeb64()->ClientId.UniqueThread;
} else {
currentThreadHandle =
(HANDLE)(ULONG_PTR)context->GetTeb32()->ClientId.UniqueThread;
}
// 检查当前线程是否拥有锁
if (cs.OwningThread == currentThreadHandle) {
cs.RecursionCount--;
if (cs.RecursionCount == 0) {
// 完全释放锁
cs.OwningThread = nullptr;
cs.LockCount = -1;
}
// 写回更新后的关键段结构
uc_mem_write(uc, lpCriticalSection, &cs,
sizeof(RTL_CRITICAL_SECTION));
}
}
printf("[*] LeaveCriticalSection: CS=0x%llx\n", lpCriticalSection);
}
auto Api_GetStartupInfoW(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t lpStartupInfo = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = lpStartupInfo
uc_reg_read(uc, UC_X86_REG_RCX, &lpStartupInfo);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uint32_t temp_info = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &temp_info, sizeof(uint32_t));
lpStartupInfo = temp_info;
}
if (lpStartupInfo != 0) {
// 创建一个默认的 STARTUPINFOW 结构
STARTUPINFOW si = {0};
si.cb = sizeof(STARTUPINFOW);
si.dwFlags = STARTF_USESHOWWINDOW;
si.wShowWindow = SW_SHOWNORMAL;
si.lpDesktop = nullptr;
si.lpTitle = nullptr;
si.dwX = 0;
si.dwY = 0;
si.dwXSize = 0;
si.dwYSize = 0;
si.dwXCountChars = 0;
si.dwYCountChars = 0;
si.dwFillAttribute = 0;
si.cbReserved2 = 0;
si.lpReserved2 = nullptr;
si.hStdInput = nullptr;
si.hStdOutput = nullptr;
si.hStdError = nullptr;
// 写入结构到目标内存
uc_mem_write(uc, lpStartupInfo, &si, sizeof(STARTUPINFOW));
}
printf("[*] GetStartupInfoW: lpStartupInfo=0x%llx\n", lpStartupInfo);
}
// 实现 GetStdHandle API
auto Api_GetStdHandle(void* sandbox, uc_engine* uc, uint64_t address) -> void {
auto context = static_cast<Sandbox*>(sandbox);
int32_t nStdHandle = 0;
HANDLE handle = INVALID_HANDLE_VALUE;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = nStdHandle
uint64_t temp_handle;
uc_reg_read(uc, UC_X86_REG_RCX, &temp_handle);
nStdHandle = static_cast<int32_t>(temp_handle);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &nStdHandle, sizeof(int32_t));
}
// 根据请求的标准句柄类型返回相应的句柄
switch ((unsigned long)nStdHandle) {
case STD_INPUT_HANDLE: // -10
handle = reinterpret_cast<HANDLE>(0x1000); // 模拟标准输入句柄
break;
case STD_OUTPUT_HANDLE: // -11
handle = reinterpret_cast<HANDLE>(0x2000); // 模拟标准输出句柄
break; // End of Selection
break;
case STD_ERROR_HANDLE: // -12
handle = reinterpret_cast<HANDLE>(0x3000); // 模拟标准错误句柄
break;
default:
handle = INVALID_HANDLE_VALUE;
// 设置错误码
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = ERROR_INVALID_PARAMETER;
} else {
context->GetTeb32()->LastErrorValue = ERROR_INVALID_PARAMETER;
}
break;
}
printf("[*] GetStdHandle: Type=%d, Handle=0x%p\n", nStdHandle, handle);
// 返回句柄值
uint64_t return_value = reinterpret_cast<uint64_t>(handle);
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&return_value);
}
// 实现 GetFileType API
auto Api_GetFileType(void* sandbox, uc_engine* uc, uint64_t address) -> void {
auto context = static_cast<Sandbox*>(sandbox);
HANDLE hFile = nullptr;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = hFile
uint64_t temp_handle;
uc_reg_read(uc, UC_X86_REG_RCX, &temp_handle);
hFile = reinterpret_cast<HANDLE>(temp_handle);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uint32_t temp_handle = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &temp_handle, sizeof(uint32_t));
hFile = reinterpret_cast<HANDLE>(static_cast<uint64_t>(temp_handle));
}
DWORD file_type = FILE_TYPE_UNKNOWN;
// 根据标准句柄类型返回相应的文件类型
if (hFile == reinterpret_cast<HANDLE>(0x1000) || // STD_INPUT_HANDLE
hFile == reinterpret_cast<HANDLE>(0x2000) || // STD_OUTPUT_HANDLE
hFile == reinterpret_cast<HANDLE>(0x3000)) { // STD_ERROR_HANDLE
file_type = FILE_TYPE_CHAR; // 控制台句柄通常是字符设备
} else {
// 对于无效句柄,设置错误码
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = ERROR_INVALID_HANDLE;
} else {
context->GetTeb32()->LastErrorValue = ERROR_INVALID_HANDLE;
}
file_type = FILE_TYPE_UNKNOWN;
}
printf("[*] GetFileType: Handle=0x%p, Type=0x%x\n", hFile, file_type);
// 返回文件类型
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&file_type);
}
// 实现 GetCommandLineA API
auto Api_GetCommandLineA(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
printf("[*] GetCommandLineA: CommandLine=%s\n", context->GetCommandLine());
// 返回命令行字符串的地址
uint64_t return_value = context->GetCommandLineAddress();
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&return_value);
}
// 实现 GetCommandLineW API
auto Api_GetCommandLineW(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
printf("[*] GetCommandLineW: CommandLine=%s\n", context->GetCommandLine());
// 返回宽字符命令行字符串的地址
uint64_t return_value = context->GetCommandLineWAddress();
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&return_value);
}
2025-03-06 20:33:02 +08:00
// 实现 GetACP API
auto Api_GetACP(void* sandbox, uc_engine* uc, uint64_t address) -> void {
// 返回默认的 ANSI 代码页 (936 - 简体中文)
uint32_t codepage = 936;
printf("[*] GetACP: CodePage=%u\n", codepage);
// 返回代码页值
uc_reg_write(uc,
static_cast<Sandbox*>(sandbox)->GetPeInfo()->isX64
? UC_X86_REG_RAX
: UC_X86_REG_EAX,
&codepage);
}
// 实现 GetCPInfo API
auto Api_GetCPInfo(void* sandbox, uc_engine* uc, uint64_t address) -> void {
auto context = static_cast<Sandbox*>(sandbox);
uint32_t codePage = 0;
uint64_t lpCPInfo = 0;
BOOL success = FALSE;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = CodePage, rdx = lpCPInfo
uint64_t temp_codepage;
uc_reg_read(uc, UC_X86_REG_RCX, &temp_codepage);
codePage = static_cast<uint32_t>(temp_codepage);
uc_reg_read(uc, UC_X86_REG_RDX, &lpCPInfo);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &codePage, sizeof(uint32_t));
esp_address += 0x4;
uint32_t temp_cpinfo;
uc_mem_read(uc, esp_address, &temp_cpinfo, sizeof(uint32_t));
lpCPInfo = temp_cpinfo;
}
if (lpCPInfo != 0) {
// 创建 CPINFO 结构
CPINFO cpInfo = {0};
// 根据代码页设置相应的信息
switch (codePage) {
case 936: // 简体中文 GBK
cpInfo.MaxCharSize = 2; // 最大字符大小为2字节
cpInfo.DefaultChar[0] = '?'; // 默认替换字符
cpInfo.DefaultChar[1] = '\0';
cpInfo.LeadByte[0] = 0x81; // 前导字节范围
cpInfo.LeadByte[1] = 0xFE;
cpInfo.LeadByte[2] = 0; // 结束标记
success = TRUE;
break;
case 437: // US ASCII
case 1252: // Western European
cpInfo.MaxCharSize = 1; // 单字节字符集
cpInfo.DefaultChar[0] = '?';
cpInfo.DefaultChar[1] = '\0';
cpInfo.LeadByte[0] = 0; // 无前导字节
success = TRUE;
break;
default:
// 不支持的代码页
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue =
ERROR_INVALID_PARAMETER;
} else {
context->GetTeb32()->LastErrorValue =
ERROR_INVALID_PARAMETER;
}
success = FALSE;
break;
}
if (success) {
// 写入 CPINFO 结构到目标内存
uc_mem_write(uc, lpCPInfo, &cpInfo, sizeof(CPINFO));
}
} else {
// 无效的指针参数
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = ERROR_INVALID_PARAMETER;
} else {
context->GetTeb32()->LastErrorValue = ERROR_INVALID_PARAMETER;
}
success = FALSE;
}
printf("[*] GetCPInfo: CodePage=%u, lpCPInfo=0x%llx, Success=%d\n",
codePage, lpCPInfo, success);
// 返回操作是否成功
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&success);
}
2025-03-07 01:47:01 +08:00
auto Api_MultiByteToWideChar(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
uint32_t CodePage = 0;
uint32_t dwFlags = 0;
uint64_t lpMultiByteStr = 0;
int32_t cbMultiByte = 0;
uint64_t lpWideCharStr = 0;
int32_t cchWideChar = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
uint64_t temp_codepage = 0;
uint64_t temp_flags = 0;
uint64_t temp_multibyte = 0;
uint64_t temp_cbmultibyte = 0;
// x64: rcx, rdx, r8, r9, [rsp+0x28], [rsp+0x30]
uc_reg_read(uc, UC_X86_REG_RCX, &temp_codepage);
uc_reg_read(uc, UC_X86_REG_RDX, &temp_flags);
uc_reg_read(uc, UC_X86_REG_R8, &temp_multibyte);
uc_reg_read(uc, UC_X86_REG_R9, &temp_cbmultibyte);
CodePage = static_cast<uint32_t>(temp_codepage);
dwFlags = static_cast<uint32_t>(temp_flags);
lpMultiByteStr = temp_multibyte;
cbMultiByte = static_cast<int32_t>(temp_cbmultibyte);
// 获取栈上的参数
uint64_t rsp = 0;
uc_reg_read(uc, UC_X86_REG_RSP, &rsp);
// 为了确保安全访问,先验证栈地址的有效性
if (rsp < 0x8000000000000000 || rsp + 0x40 > 0x8000000000010000) {
// 无效的栈地址
DWORD error = ERROR_INVALID_PARAMETER;
context->GetTeb64()->LastErrorValue = error;
int result = 0;
uc_reg_write(uc, UC_X86_REG_RAX, &result);
return;
}
// 读取栈上的参数
uint64_t shadow_space = 0x20; // x64调用约定中的shadow space
uc_mem_read(uc, rsp + shadow_space + 0x8, &lpWideCharStr,
sizeof(uint64_t));
uc_mem_read(uc, rsp + shadow_space + 0x10, &cchWideChar,
sizeof(int32_t));
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &CodePage, sizeof(uint32_t));
uc_mem_read(uc, esp_address + 0x4, &dwFlags, sizeof(uint32_t));
uc_mem_read(uc, esp_address + 0x8, &lpMultiByteStr, sizeof(uint32_t));
uc_mem_read(uc, esp_address + 0xC, &cbMultiByte, sizeof(int32_t));
uc_mem_read(uc, esp_address + 0x10, &lpWideCharStr, sizeof(uint32_t));
uc_mem_read(uc, esp_address + 0x14, &cchWideChar, sizeof(int32_t));
}
// 验证参数
if (lpMultiByteStr == 0 || (lpWideCharStr == 0 && cchWideChar != 0)) {
DWORD error = ERROR_INVALID_PARAMETER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
int result = 0;
uc_reg_write(
uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
return;
}
// 读取源字符串
std::vector<char> srcBuffer;
if (cbMultiByte == -1) {
// 如果长度为-1,则源字符串以null结尾
char ch = 0;
size_t len = 0;
do {
if (uc_mem_read(uc, lpMultiByteStr + len, &ch, 1) != UC_ERR_OK) {
break;
}
srcBuffer.push_back(ch);
len++;
} while (ch != 0 && len < MAX_PATH); // 添加长度限制防止无限循环
if (len >= MAX_PATH) {
// 设置错误码
DWORD error = ERROR_INSUFFICIENT_BUFFER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
int result = 0;
uc_reg_write(
uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
return;
}
cbMultiByte = static_cast<int32_t>(len);
} else if (cbMultiByte > 0) {
// 使用指定长度,但添加安全检查
if (cbMultiByte > MAX_PATH) {
DWORD error = ERROR_INSUFFICIENT_BUFFER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
int result = 0;
uc_reg_write(
uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
return;
}
srcBuffer.resize(cbMultiByte);
if (uc_mem_read(uc, lpMultiByteStr, srcBuffer.data(), cbMultiByte) !=
UC_ERR_OK) {
DWORD error = ERROR_INVALID_PARAMETER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
int result = 0;
uc_reg_write(
uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
return;
}
} else {
// 无效的输入长度
DWORD error = ERROR_INVALID_PARAMETER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
int result = 0;
uc_reg_write(
uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
return;
}
// 计算所需的宽字符缓冲区大小
int result = MultiByteToWideChar(CodePage, dwFlags, srcBuffer.data(),
cbMultiByte, nullptr, 0);
if (result == 0) {
// 转换失败,获取错误码
DWORD error = GetLastError();
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
uc_reg_write(
uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
return;
}
// 如果只是查询所需缓冲区大小
if (lpWideCharStr == 0 || cchWideChar == 0) {
uc_reg_write(
uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
return;
}
// 检查目标缓冲区大小是否足够
if (cchWideChar < result) {
DWORD error = ERROR_INSUFFICIENT_BUFFER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
result = 0;
uc_reg_write(
uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
return;
}
// 执行实际转换
std::vector<wchar_t> wideBuffer(result);
if (MultiByteToWideChar(CodePage, dwFlags, srcBuffer.data(), cbMultiByte,
wideBuffer.data(), result) > 0) {
// 写入转换后的字符串到目标内存
if (uc_mem_write(uc, lpWideCharStr, wideBuffer.data(),
result * sizeof(wchar_t)) != UC_ERR_OK) {
DWORD error = ERROR_INVALID_PARAMETER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
result = 0;
}
} else {
// 转换失败
DWORD error = GetLastError();
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
result = 0;
}
printf(
"[*] MultiByteToWideChar: CodePage=%u, Flags=0x%x, Input=%p, "
"InputLen=%d, Output=%p, OutputLen=%d, Result=%d\n",
CodePage, dwFlags, (void*)lpMultiByteStr, cbMultiByte,
(void*)lpWideCharStr, cchWideChar, result);
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
}
2025-03-06 18:39:01 +08:00
auto Sandbox::CreateHeapSegment(uint64_t base, size_t size) -> HeapSegment* {
auto segment = new HeapSegment();
segment->base = base;
segment->size = size;
// 创建初始空闲块
auto block = new HeapBlock();
block->address = base;
block->size = size;
block->is_free = true;
block->next = nullptr;
block->prev = nullptr;
segment->blocks = block;
return segment;
}
auto Sandbox::AllocateFromSegment(HeapSegment* segment, size_t size)
-> uint64_t {
// 对齐大小到16字节
size = (size + 15) & ~15;
// 查找合适的空闲块
HeapBlock* current = segment->blocks;
while (current != nullptr) {
if (current->is_free && current->size >= size) {
// 如果块太大,分割它
if (current->size > size + 32) { // 32字节为最小块大小
SplitBlock(current, size);
}
current->is_free = false;
return current->address;
}
current = current->next;
}
return 0; // 分配失败
}
auto Sandbox::FreeBlock(uint64_t address) -> bool {
// 查找包含此地址的堆段
HeapSegment* segment = FindHeapSegment(address);
if (!segment) return false;
// 查找对应的块
HeapBlock* current = segment->blocks;
while (current != nullptr) {
if (current->address == address) {
if (current->is_free) return false; // 已经是空闲的
current->is_free = true;
MergeBlocks(current); // 尝试合并相邻的空闲块
return true;
}
current = current->next;
}
return false;
}
auto Sandbox::FindHeapSegment(uint64_t address) -> HeapSegment* {
for (auto& pair : m_heapSegments) {
HeapSegment* segment = pair.second;
if (address >= segment->base &&
address < segment->base + segment->size) {
return segment;
}
}
return nullptr;
}
auto Sandbox::MergeBlocks(HeapBlock* block) -> void {
// 与后一个块合并
if (block->next && block->next->is_free) {
block->size += block->next->size;
HeapBlock* temp = block->next;
block->next = temp->next;
if (block->next) {
block->next->prev = block;
}
delete temp;
}
// 与前一个块合并
if (block->prev && block->prev->is_free) {
block->prev->size += block->size;
block->prev->next = block->next;
if (block->next) {
block->next->prev = block->prev;
}
delete block;
}
}
auto Sandbox::SplitBlock(HeapBlock* block, size_t size) -> void {
size_t remaining_size = block->size - size;
block->size = size;
auto new_block = new HeapBlock();
new_block->address = block->address + size;
new_block->size = remaining_size;
new_block->is_free = true;
new_block->next = block->next;
new_block->prev = block;
if (block->next) {
block->next->prev = new_block;
}
block->next = new_block;
}
auto Sandbox::InitCommandLine(std::string commandLine) -> void {
// 设置默认的命令行字符串
m_commandLine = commandLine;
// 将ANSI命令行字符串写入模拟内存
uc_mem_map(m_ucEngine, CMDLINE_ADDRESS, PAGE_SIZE,
UC_PROT_READ | UC_PROT_WRITE);
uc_mem_write(m_ucEngine, CMDLINE_ADDRESS, m_commandLine.c_str(),
m_commandLine.length() + 1);
// 为宽字符命令行分配内存
uc_mem_map(m_ucEngine, CMDLINEW_ADDRESS, PAGE_SIZE,
UC_PROT_READ | UC_PROT_WRITE);
// 将ANSI字符串转换为宽字符字符串
std::wstring wCommandLine(m_commandLine.begin(), m_commandLine.end());
// 写入宽字符命令行字符串
uc_mem_write(m_ucEngine, CMDLINEW_ADDRESS, wCommandLine.c_str(),
(wCommandLine.length() + 1) * sizeof(wchar_t));
}
2025-03-07 01:47:01 +08:00
auto Api_GetModuleFileNameW(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t hModule = 0;
uint64_t lpFilename = 0;
uint32_t nSize = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = hModule, rdx = lpFilename, r8 = nSize
uc_reg_read(uc, UC_X86_REG_RCX, &hModule);
uc_reg_read(uc, UC_X86_REG_RDX, &lpFilename);
uint64_t temp_size;
uc_reg_read(uc, UC_X86_REG_R8, &temp_size);
nSize = static_cast<uint32_t>(temp_size);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uint32_t temp_module = 0;
uint32_t temp_filename = 0;
uc_mem_read(uc, esp_address, &temp_module, sizeof(uint32_t));
uc_mem_read(uc, esp_address + 0x4, &temp_filename, sizeof(uint32_t));
uc_mem_read(uc, esp_address + 0x8, &nSize, sizeof(uint32_t));
hModule = temp_module;
lpFilename = temp_filename;
}
uint32_t result = 0;
// 验证参数
if (lpFilename == 0 || nSize == 0) {
DWORD error = ERROR_INVALID_PARAMETER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
uc_reg_write(
uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
return;
}
std::wstring modulePath;
if (hModule == 0) {
// 如果hModule为NULL,返回主模块(PE文件)的路径
modulePath = std::wstring(context->GetPeInfo()->inputFilePath.begin(),
context->GetPeInfo()->inputFilePath.end());
} else {
// 在模块列表中查找对应模块
bool found = false;
for (const auto& module : context->GetModuleList()) {
if (module->base == hModule) {
// 构建完整的模块路径
char windowsPath[MAX_PATH];
GetWindowsDirectoryA(windowsPath, sizeof(windowsPath));
// 根据PE架构选择正确的系统目录
const std::string systemDir = context->GetPeInfo()->isX64
? "\\System32\\"
: "\\SysWOW64\\";
std::string fullPath =
std::string(windowsPath) + systemDir + module->name;
modulePath = std::wstring(fullPath.begin(), fullPath.end());
found = true;
break;
}
}
if (!found) {
DWORD error = ERROR_MOD_NOT_FOUND;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
uc_reg_write(
uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
return;
}
}
// 检查缓冲区大小是否足够
if (nSize < modulePath.length() + 1) {
// 缓冲区太小,返回所需大小
result = static_cast<uint32_t>(modulePath.length() + 1);
DWORD error = ERROR_INSUFFICIENT_BUFFER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
} else {
// 写入路径到缓冲区
if (uc_mem_write(uc, lpFilename, modulePath.c_str(),
(modulePath.length() + 1) * sizeof(wchar_t)) ==
UC_ERR_OK) {
result = static_cast<uint32_t>(modulePath.length());
} else {
result = 0;
DWORD error = ERROR_INVALID_PARAMETER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
}
}
printf(
"[*] GetModuleFileNameW: Module=0x%llx, Buffer=0x%llx, Size=%u, "
"Result=%u, Path=%ls\n",
hModule, lpFilename, nSize, result, modulePath.c_str());
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
}
// 实现 AreFileApisANSI API
auto Api_AreFileApisANSI(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
// 默认返回TRUE表示使用ANSI字符集
BOOL isAnsi = TRUE;
printf("[*] AreFileApisANSI: IsAnsi=%d\n", isAnsi);
// 返回结果
uc_reg_write(uc,
static_cast<Sandbox*>(sandbox)->GetPeInfo()->isX64
? UC_X86_REG_RAX
: UC_X86_REG_EAX,
&isAnsi);
}
auto Api_WideCharToMultiByte(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
uint32_t CodePage = 0;
uint32_t dwFlags = 0;
uint64_t lpWideCharStr = 0;
int32_t cchWideChar = 0;
uint64_t lpMultiByteStr = 0;
int32_t cbMultiByte = 0;
uint64_t lpDefaultChar = 0;
uint64_t lpUsedDefaultChar = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx, rdx, r8, r9, [rsp+0x28], [rsp+0x30], [rsp+0x38], [rsp+0x40]
uint64_t temp_codepage = 0;
uint64_t temp_flags = 0;
uint64_t temp_widechar = 0;
uint64_t temp_cchwidechar = 0;
uc_reg_read(uc, UC_X86_REG_RCX, &temp_codepage);
uc_reg_read(uc, UC_X86_REG_RDX, &temp_flags);
uc_reg_read(uc, UC_X86_REG_R8, &temp_widechar);
uc_reg_read(uc, UC_X86_REG_R9, &temp_cchwidechar);
CodePage = static_cast<uint32_t>(temp_codepage);
dwFlags = static_cast<uint32_t>(temp_flags);
lpWideCharStr = temp_widechar;
cchWideChar = static_cast<int32_t>(temp_cchwidechar);
// 获取栈上的参数
uint64_t rsp = 0;
uc_reg_read(uc, UC_X86_REG_RSP, &rsp);
uint64_t shadow_space = 0x20;
uc_mem_read(uc, rsp + shadow_space + 0x8, &lpMultiByteStr,
sizeof(uint64_t));
uc_mem_read(uc, rsp + shadow_space + 0x10, &cbMultiByte,
sizeof(int32_t));
uc_mem_read(uc, rsp + shadow_space + 0x18, &lpDefaultChar,
sizeof(uint64_t));
uc_mem_read(uc, rsp + shadow_space + 0x20, &lpUsedDefaultChar,
sizeof(uint64_t));
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &CodePage, sizeof(uint32_t));
uc_mem_read(uc, esp_address + 0x4, &dwFlags, sizeof(uint32_t));
uc_mem_read(uc, esp_address + 0x8, &lpWideCharStr, sizeof(uint32_t));
uc_mem_read(uc, esp_address + 0xC, &cchWideChar, sizeof(int32_t));
uc_mem_read(uc, esp_address + 0x10, &lpMultiByteStr, sizeof(uint32_t));
uc_mem_read(uc, esp_address + 0x14, &cbMultiByte, sizeof(int32_t));
uc_mem_read(uc, esp_address + 0x18, &lpDefaultChar, sizeof(uint32_t));
uc_mem_read(uc, esp_address + 0x1C, &lpUsedDefaultChar,
sizeof(uint32_t));
}
// 基本参数验证
if (lpWideCharStr == 0 || cchWideChar == 0) {
DWORD error = ERROR_INVALID_PARAMETER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
int result = 0;
uc_reg_write(
uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
return;
}
// 读取源宽字符串
std::vector<wchar_t> srcBuffer;
size_t actualWideLength = 0;
if (cchWideChar == -1) {
// 如果长度为-1,则源字符串以null结尾
wchar_t ch = 0;
do {
if (uc_mem_read(uc, lpWideCharStr + (actualWideLength * 2), &ch,
2) != UC_ERR_OK) {
break;
}
srcBuffer.push_back(ch);
actualWideLength++;
} while (ch != 0 && actualWideLength < MAX_PATH);
if (actualWideLength >= MAX_PATH) {
DWORD error = ERROR_INSUFFICIENT_BUFFER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
int result = 0;
uc_reg_write(
uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
return;
}
} else {
// 使用指定长度
if (cchWideChar > 0 && cchWideChar <= MAX_PATH) {
srcBuffer.resize(cchWideChar);
if (uc_mem_read(uc, lpWideCharStr, srcBuffer.data(),
cchWideChar * 2) != UC_ERR_OK) {
DWORD error = ERROR_INVALID_PARAMETER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
int result = 0;
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX
: UC_X86_REG_EAX,
&result);
return;
}
actualWideLength = cchWideChar;
} else {
DWORD error = ERROR_INVALID_PARAMETER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
int result = 0;
uc_reg_write(
uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
return;
}
}
// 读取默认字符和使用默认字符标志
char defaultChar = '?';
BOOL usedDefaultChar = FALSE;
if (lpDefaultChar != 0) {
uc_mem_read(uc, lpDefaultChar, &defaultChar, 1);
}
// 计算所需的多字节缓冲区大小
int requiredSize = WideCharToMultiByte(
CodePage, dwFlags, srcBuffer.data(), static_cast<int>(actualWideLength),
nullptr, 0, lpDefaultChar ? &defaultChar : nullptr,
lpUsedDefaultChar ? &usedDefaultChar : nullptr);
if (requiredSize == 0) {
// 获取并设置错误码
DWORD error = GetLastError();
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
int result = 0;
uc_reg_write(
uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
return;
}
// 如果只是查询所需缓冲区大小
if (lpMultiByteStr == 0 || cbMultiByte == 0) {
uc_reg_write(
uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&requiredSize);
return;
}
// 检查目标缓冲区大小是否足够
if (cbMultiByte < requiredSize) {
DWORD error = ERROR_INSUFFICIENT_BUFFER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
int result = 0;
uc_reg_write(
uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
return;
}
// 执行实际转换
std::vector<char> multiByteBuffer(requiredSize);
int result = WideCharToMultiByte(
CodePage, dwFlags, srcBuffer.data(), static_cast<int>(actualWideLength),
multiByteBuffer.data(), requiredSize,
lpDefaultChar ? &defaultChar : nullptr,
lpUsedDefaultChar ? &usedDefaultChar : nullptr);
if (result > 0) {
// 写入转换后的字符串到目标内存
if (uc_mem_write(uc, lpMultiByteStr, multiByteBuffer.data(), result) !=
UC_ERR_OK) {
DWORD error = ERROR_INVALID_PARAMETER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
result = 0;
}
// 如果需要,写回使用默认字符标志
if (lpUsedDefaultChar != 0) {
uc_mem_write(uc, lpUsedDefaultChar, &usedDefaultChar, sizeof(BOOL));
}
} else {
// 获取并设置错误码
DWORD error = GetLastError();
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
}
printf(
"[*] WideCharToMultiByte: CodePage=%u, Flags=0x%x, WideStr=%p, "
"WideLen=%d, MultiStr=%p, MultiLen=%d, Result=%d\n",
CodePage, dwFlags, (void*)lpWideCharStr, cchWideChar,
(void*)lpMultiByteStr, cbMultiByte, result);
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
}
2025-03-07 19:27:05 +08:00
// 实现 InitializeSListHead API
auto Api_InitializeSListHead(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t ListHead = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = ListHead
uc_reg_read(uc, UC_X86_REG_RCX, &ListHead);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uint32_t temp_listhead = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &temp_listhead, sizeof(uint32_t));
ListHead = temp_listhead;
}
if (ListHead != 0) {
if (context->GetPeInfo()->isX64) {
// 64位系统的SLIST_HEADER结构 (16字节对齐)
struct SLIST_HEADER64 {
union {
struct {
ULONGLONG Alignment;
ULONGLONG Region;
} DUMMYSTRUCTNAME;
struct {
ULONGLONG Depth : 16;
ULONGLONG Sequence : 48;
ULONGLONG Reserved : 4;
ULONGLONG NextEntry : 60;
} HeaderX64;
};
} header = {0};
// 初始化Depth和Sequence为0
header.HeaderX64.Depth = 0;
header.HeaderX64.Sequence = 0;
header.HeaderX64.Reserved = 0;
header.HeaderX64.NextEntry = 0;
// 写入初始化的结构
uc_mem_write(uc, ListHead, &header, sizeof(SLIST_HEADER64));
} else {
// 32位系统的SLIST_HEADER结构 (8字节)
struct SLIST_HEADER32 {
union {
ULONGLONG Alignment;
struct {
SLIST_ENTRY* Next;
WORD Depth;
WORD Sequence;
} Header32;
};
} header = {0};
// 初始化Next、Depth和Sequence为0
header.Header32.Next = nullptr;
header.Header32.Depth = 0;
header.Header32.Sequence = 0;
// 写入初始化的结构
uc_mem_write(uc, ListHead, &header, sizeof(SLIST_HEADER32));
}
}
printf("[*] InitializeSListHead: ListHead=0x%llx\n", ListHead);
}
// 实现 GetEnvironmentStringsW API
auto Api_GetEnvironmentStringsW(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t envBlock = context->GetEnvBlockBase();
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&envBlock);
}
// 实现 FreeEnvironmentStringsW API
auto Api_FreeEnvironmentStringsW(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t lpszEnvironmentBlock = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = lpszEnvironmentBlock
uc_reg_read(uc, UC_X86_REG_RCX, &lpszEnvironmentBlock);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uint32_t temp_block = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &temp_block, sizeof(uint32_t));
lpszEnvironmentBlock = temp_block;
}
// 检查传入的地址是否是我们之前分配的环境块地址
BOOL success = (lpszEnvironmentBlock == context->GetEnvBlockBase());
if (!success) {
// 如果地址无效,设置错误码
DWORD error = ERROR_INVALID_PARAMETER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
}
printf("[*] FreeEnvironmentStringsW: Block=0x%llx, Success=%d\n",
lpszEnvironmentBlock, success);
// 返回操作是否成功
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&success);
}
// 实现 SetUnhandledExceptionFilter API
auto Api_SetUnhandledExceptionFilter(void* sandbox, uc_engine* uc,
uint64_t address) -> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t lpTopLevelExceptionFilter = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = lpTopLevelExceptionFilter
uc_reg_read(uc, UC_X86_REG_RCX, &lpTopLevelExceptionFilter);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uint32_t temp_filter = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &temp_filter, sizeof(uint32_t));
lpTopLevelExceptionFilter = temp_filter;
}
// 简单实现返回NULL表示没有之前的过滤器
uint64_t prev_filter = 0;
printf("[*] SetUnhandledExceptionFilter: Filter=0x%llx\n",
lpTopLevelExceptionFilter);
// 返回之前的过滤器在这里始终返回NULL
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&prev_filter);
}
2025-03-09 00:06:37 +08:00
// 将Windows VirtualProtect保护标志转换为Unicorn内存保护标志
uint32_t WindowsToUnicornProtect(uint32_t windowsProtect) {
uint32_t unicornProtect = UC_PROT_NONE;
// 转换基本属性
if (windowsProtect & (PAGE_READONLY | PAGE_READWRITE | PAGE_EXECUTE_READ |
PAGE_EXECUTE_READWRITE)) {
unicornProtect |= UC_PROT_READ;
}
if (windowsProtect & (PAGE_READWRITE | PAGE_WRITECOPY |
PAGE_EXECUTE_READWRITE | PAGE_EXECUTE_WRITECOPY)) {
unicornProtect |= UC_PROT_WRITE;
}
if (windowsProtect & (PAGE_EXECUTE | PAGE_EXECUTE_READ |
PAGE_EXECUTE_READWRITE | PAGE_EXECUTE_WRITECOPY)) {
unicornProtect |= UC_PROT_EXEC;
}
// 如果没有有效标志,至少给予读权限以防崩溃
if (unicornProtect == UC_PROT_NONE && windowsProtect != PAGE_NOACCESS) {
unicornProtect = UC_PROT_READ;
}
return unicornProtect;
}
auto Api_VirtualProtect(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t lpAddress = 0;
uint64_t dwSize = 0;
uint32_t flNewProtect = 0;
uint64_t lpflOldProtect = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = lpAddress, rdx = dwSize, r8 = flNewProtect, r9 =
// lpflOldProtect
uc_reg_read(uc, UC_X86_REG_RCX, &lpAddress);
uc_reg_read(uc, UC_X86_REG_RDX, &dwSize);
uint64_t temp_protect;
uc_reg_read(uc, UC_X86_REG_R8, &temp_protect);
flNewProtect = static_cast<uint32_t>(temp_protect);
uc_reg_read(uc, UC_X86_REG_R9, &lpflOldProtect);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uint32_t temp_address;
uc_mem_read(uc, esp_address, &temp_address, sizeof(uint32_t));
lpAddress = temp_address;
esp_address += 0x4;
uint32_t temp_size;
uc_mem_read(uc, esp_address, &temp_size, sizeof(uint32_t));
dwSize = temp_size;
esp_address += 0x4;
uc_mem_read(uc, esp_address, &flNewProtect, sizeof(uint32_t));
esp_address += 0x4;
uint32_t temp_old_protect;
uc_mem_read(uc, esp_address, &temp_old_protect, sizeof(uint32_t));
lpflOldProtect = temp_old_protect;
}
// 检查参数有效性
if (lpAddress == 0 || dwSize == 0 || lpflOldProtect == 0) {
uint64_t result = 0; // FALSE
uc_reg_write(
uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
// 设置错误码 - ERROR_INVALID_PARAMETER
DWORD error = ERROR_INVALID_PARAMETER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
return;
}
// 检查地址范围是否已映射
uint32_t unicornProtect = WindowsToUnicornProtect(flNewProtect);
uc_err err = uc_mem_protect(uc, lpAddress, dwSize, unicornProtect);
if (err != UC_ERR_OK) {
uint64_t result = 0; // FALSE
uc_reg_write(
uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
// 设置错误码 - ERROR_INVALID_ADDRESS
DWORD error = ERROR_INVALID_ADDRESS;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
return;
}
// 模拟的旧保护属性,这里简化为一个默认值
// 实际应用中,应该从内存映射表中获取
uint32_t oldProtect = PAGE_READWRITE;
// 写入旧保护值到lpflOldProtect指向的内存
uc_mem_write(uc, lpflOldProtect, &oldProtect, sizeof(uint32_t));
// 调试输出
printf(
"[*] VirtualProtect: Address=0x%llx, Size=0x%llx, WindowsProtect=0x%x, "
"UnicornProtect=0x%x, OldProtect=0x%x\n",
lpAddress, dwSize, flNewProtect, unicornProtect, oldProtect);
// 设置返回值为TRUE
uint64_t result = 1; // TRUE
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
}
2025-03-09 03:19:40 +08:00
auto Api___set_app_type(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
int32_t appType = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = appType
uint64_t temp_type;
uc_reg_read(uc, UC_X86_REG_RCX, &temp_type);
appType = static_cast<int32_t>(temp_type);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &appType, sizeof(int32_t));
}
// 简单地返回0表示成功
int32_t result = 0;
printf("[*] __set_app_type: AppType=%d\n", appType);
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
}
auto Api___p__fmode(void* sandbox, uc_engine* uc, uint64_t address) -> void {
auto sb = static_cast<Sandbox*>(sandbox);
// 检查是否已经创建了 _fmode 变量
static uint64_t fmode_address = 0;
static int32_t fmode_value = 0; // 默认为文本模式 (_O_TEXT)
if (fmode_address == 0) {
// 为 _fmode 变量分配内存
// 使用特定堆地址,与其他 API 一致
uint64_t heap_handle =
sb->GetPeInfo()->isX64 ? HEAP_ADDRESS_64 : HEAP_ADDRESS_32;
// 在堆上分配空间
HeapSegment* segment = nullptr;
auto it = sb->m_heapSegments.find(heap_handle);
if (it != sb->m_heapSegments.end()) {
segment = it->second;
} else {
// 创建新的堆段
segment = sb->CreateHeapSegment(heap_handle, 0x10000);
sb->m_heapSegments[heap_handle] = segment;
}
if (segment) {
fmode_address = sb->AllocateFromSegment(segment, sizeof(int32_t));
if (fmode_address) {
// 初始化 _fmode 为文本模式
uc_mem_write(uc, fmode_address, &fmode_value, sizeof(int32_t));
printf(
"[*] __p__fmode: Allocated _fmode at 0x%llx with value "
"%d\n",
fmode_address, fmode_value);
}
}
}
// 返回 _fmode 变量的地址
printf("[*] __p__fmode: Returning address 0x%llx\n", fmode_address);
// 设置返回值
if (sb->GetPeInfo()->isX64) {
uc_reg_write(uc, UC_X86_REG_RAX, &fmode_address);
} else {
uint32_t eax = static_cast<uint32_t>(fmode_address);
uc_reg_write(uc, UC_X86_REG_EAX, &eax);
}
}
2025-03-06 18:39:01 +08:00
auto Sandbox::InitApiHooks() -> void {
auto FakeApi_GetSystemTimeAsFileTime =
_fakeApi{.func = Api_GetSystemTimeAsFileTime, .paramCount = 1};
auto FakeApi_GetCurrentThreadId =
_fakeApi{.func = Api_GetCurrentThreadId, .paramCount = 0};
auto FakeApi_GetCurrentProcessId =
_fakeApi{.func = Api_GetCurrentProcessId, .paramCount = 0};
auto FakeApi_QueryPerformanceCounter =
_fakeApi{.func = Api_QueryPerformanceCounter, .paramCount = 1};
auto FakeApi_LoadLibraryA =
_fakeApi{.func = Api_LoadLibraryA, .paramCount = 1};
auto FakeApi_LoadLibraryExW =
_fakeApi{.func = Api_LoadLibraryExW, .paramCount = 3};
auto FakeApi_GetLastError =
_fakeApi{.func = Api_GetLastError, .paramCount = 0};
auto FakeApi_InitializeCriticalSectionAndSpinCount = _fakeApi{
.func = Api_InitializeCriticalSectionAndSpinCount, .paramCount = 2};
auto FakeApi_TlsAlloc = _fakeApi{.func = Api_TlsAlloc, .paramCount = 0};
auto FakeApi_TlsSetValue =
_fakeApi{.func = Api_TlsSetValue, .paramCount = 2};
auto FakeApi_DeleteCriticalSection =
_fakeApi{.func = Api_DeleteCriticalSection, .paramCount = 1};
auto FakeApi_IsProcessorFeaturePresent =
_fakeApi{.func = Api_IsProcessorFeaturePresent, .paramCount = 1};
auto FakeApi_GetProcAddress =
_fakeApi{.func = Api_GetProcAddress, .paramCount = 2};
auto FakeApi_GetProcessHeap =
_fakeApi{.func = Api_GetProcessHeap, .paramCount = 0};
auto FakeApi_HeapAlloc = _fakeApi{.func = Api_HeapAlloc, .paramCount = 3};
auto FakeApi_HeapFree = _fakeApi{.func = Api_HeapFree, .paramCount = 3};
auto FakeApi_TlsGetValue =
_fakeApi{.func = Api_TlsGetValue, .paramCount = 1};
auto FakeApi_SetLastError =
_fakeApi{.func = Api_SetLastError, .paramCount = 1};
auto FakeApi_EnterCriticalSection =
_fakeApi{.func = Api_EnterCriticalSection, .paramCount = 1};
auto FakeApi_LeaveCriticalSection =
_fakeApi{.func = Api_LeaveCriticalSection, .paramCount = 1};
auto FakeApi_GetStartupInfoW =
_fakeApi{.func = Api_GetStartupInfoW, .paramCount = 1};
auto FakeApi_GetStdHandle =
_fakeApi{.func = Api_GetStdHandle, .paramCount = 1};
auto FakeApi_GetFileType =
_fakeApi{.func = Api_GetFileType, .paramCount = 1};
auto FakeApi_GetCommandLineA =
_fakeApi{.func = Api_GetCommandLineA, .paramCount = 0};
auto FakeApi_GetCommandLineW =
_fakeApi{.func = Api_GetCommandLineW, .paramCount = 0};
2025-03-06 20:33:02 +08:00
auto FakeApi_GetACP = _fakeApi{.func = Api_GetACP, .paramCount = 0};
auto FakeApi_GetCPInfo = _fakeApi{.func = Api_GetCPInfo, .paramCount = 2};
2025-03-07 01:47:01 +08:00
auto FakeApi_MultiByteToWideChar =
_fakeApi{.func = Api_MultiByteToWideChar, .paramCount = 6};
auto FakeApi_GetModuleFileNameW =
_fakeApi{.func = Api_GetModuleFileNameW, .paramCount = 3};
auto FakeApi_AreFileApisANSI =
_fakeApi{.func = Api_AreFileApisANSI, .paramCount = 0};
auto FakeApi_WideCharToMultiByte =
_fakeApi{.func = Api_WideCharToMultiByte, .paramCount = 8};
2025-03-07 19:27:05 +08:00
auto FakeApi_InitializeSListHead =
_fakeApi{.func = Api_InitializeSListHead, .paramCount = 1};
auto FakeApi_GetEnvironmentStringsW =
_fakeApi{.func = Api_GetEnvironmentStringsW, .paramCount = 0};
auto FakeApi_FreeEnvironmentStringsW =
_fakeApi{.func = Api_FreeEnvironmentStringsW, .paramCount = 1};
auto FakeApi_SetUnhandledExceptionFilter =
_fakeApi{.func = Api_SetUnhandledExceptionFilter, .paramCount = 1};
2025-03-09 00:06:37 +08:00
auto FakeApi_VirtualProtect =
_fakeApi{.func = Api_VirtualProtect, .paramCount = 4};
2025-03-09 03:19:40 +08:00
auto FakeApi___set_app_type =
_fakeApi{.func = Api___set_app_type, .paramCount = 1};
auto FakeApi___p__fmode = _fakeApi{.func = Api___p__fmode, .paramCount = 0};
2025-03-06 18:39:01 +08:00
api_map = {
{"GetSystemTimeAsFileTime",
std::make_shared<_fakeApi>(FakeApi_GetSystemTimeAsFileTime)},
{"GetCurrentThreadId",
std::make_shared<_fakeApi>(FakeApi_GetCurrentThreadId)},
{"GetCurrentProcessId",
std::make_shared<_fakeApi>(FakeApi_GetCurrentProcessId)},
{"QueryPerformanceCounter",
std::make_shared<_fakeApi>(FakeApi_QueryPerformanceCounter)},
{"LoadLibraryA", std::make_shared<_fakeApi>(FakeApi_LoadLibraryA)},
{"LoadLibraryExW", std::make_shared<_fakeApi>(FakeApi_LoadLibraryExW)},
{"GetLastError", std::make_shared<_fakeApi>(FakeApi_GetLastError)},
{"InitializeCriticalSectionAndSpinCount",
std::make_shared<_fakeApi>(
FakeApi_InitializeCriticalSectionAndSpinCount)},
{"DeleteCriticalSection",
std::make_shared<_fakeApi>(FakeApi_DeleteCriticalSection)},
{"TlsAlloc", std::make_shared<_fakeApi>(FakeApi_TlsAlloc)},
{"TlsSetValue", std::make_shared<_fakeApi>(FakeApi_TlsSetValue)},
{"IsProcessorFeaturePresent",
std::make_shared<_fakeApi>(FakeApi_IsProcessorFeaturePresent)},
{"GetProcAddress", std::make_shared<_fakeApi>(FakeApi_GetProcAddress)},
{"GetProcessHeap", std::make_shared<_fakeApi>(FakeApi_GetProcessHeap)},
{"HeapAlloc", std::make_shared<_fakeApi>(FakeApi_HeapAlloc)},
{"HeapFree", std::make_shared<_fakeApi>(FakeApi_HeapFree)},
{"TlsGetValue", std::make_shared<_fakeApi>(FakeApi_TlsGetValue)},
{"SetLastError", std::make_shared<_fakeApi>(FakeApi_SetLastError)},
{"EnterCriticalSection",
std::make_shared<_fakeApi>(FakeApi_EnterCriticalSection)},
{"LeaveCriticalSection",
std::make_shared<_fakeApi>(FakeApi_LeaveCriticalSection)},
{"GetStartupInfoW",
std::make_shared<_fakeApi>(FakeApi_GetStartupInfoW)},
{"GetStdHandle", std::make_shared<_fakeApi>(FakeApi_GetStdHandle)},
{"GetFileType", std::make_shared<_fakeApi>(FakeApi_GetFileType)},
{"GetCommandLineA",
std::make_shared<_fakeApi>(FakeApi_GetCommandLineA)},
{"GetCommandLineW",
2025-03-06 20:33:02 +08:00
std::make_shared<_fakeApi>(FakeApi_GetCommandLineW)},
{"GetACP", std::make_shared<_fakeApi>(FakeApi_GetACP)},
2025-03-07 01:47:01 +08:00
{"GetCPInfo", std::make_shared<_fakeApi>(FakeApi_GetCPInfo)},
{"MultiByteToWideChar",
std::make_shared<_fakeApi>(FakeApi_MultiByteToWideChar)},
{"GetModuleFileNameW",
std::make_shared<_fakeApi>(FakeApi_GetModuleFileNameW)},
{"AreFileApisANSI",
std::make_shared<_fakeApi>(FakeApi_AreFileApisANSI)},
{"WideCharToMultiByte",
std::make_shared<_fakeApi>(FakeApi_WideCharToMultiByte)},
2025-03-07 19:27:05 +08:00
{"InitializeSListHead",
std::make_shared<_fakeApi>(FakeApi_InitializeSListHead)},
{"GetEnvironmentStringsW",
std::make_shared<_fakeApi>(FakeApi_GetEnvironmentStringsW)},
{"FreeEnvironmentStringsW",
std::make_shared<_fakeApi>(FakeApi_FreeEnvironmentStringsW)},
{"SetUnhandledExceptionFilter",
std::make_shared<_fakeApi>(FakeApi_SetUnhandledExceptionFilter)},
2025-03-09 00:06:37 +08:00
{"VirtualProtect", std::make_shared<_fakeApi>(FakeApi_VirtualProtect)},
2025-03-09 03:19:40 +08:00
{"__set_app_type", std::make_shared<_fakeApi>(FakeApi___set_app_type)},
{"__p__fmode", std::make_shared<_fakeApi>(FakeApi___p__fmode)},
2025-03-07 01:47:01 +08:00
};
2025-03-06 18:39:01 +08:00
}
auto Sandbox::EmulateApi(uc_engine* uc, uint64_t address, uint64_t rip,
std::string ApiName) -> void {
auto it = api_map.find(ApiName);
if (it != api_map.end()) {
it->second->func(this, uc, address);
// 获取参数数量
int paramCount = it->second->paramCount;
2025-03-09 03:19:40 +08:00
uint32_t esp;
2025-03-06 18:39:01 +08:00
uint64_t rsp;
// 从栈上读取返回地址
uint64_t return_address;
if (this->GetPeInfo()->isX64) { // 64位系统
2025-03-09 03:19:40 +08:00
uc_reg_read(uc, UC_X86_REG_RSP, &rsp);
2025-03-06 18:39:01 +08:00
// 读取8字节的返回地址
uc_mem_read(uc, rsp, &return_address, 8);
// x64下前4个参数通过寄存器传递超过的部分通过栈传递
2025-03-07 19:27:05 +08:00
// int stack_params = (paramCount > 4) ? (paramCount - 4) : 0;
2025-03-06 18:39:01 +08:00
// 调整栈指针每个参数8字节 + 返回地址8字节
2025-03-07 19:27:05 +08:00
// rsp += (stack_params * 8) + 8;
rsp += 8;
2025-03-06 18:39:01 +08:00
// 设置RIP为返回地址
uc_reg_write(uc, UC_X86_REG_RIP, &return_address);
} else { // 32位系统
// 读取4字节的返回地址
2025-03-09 03:19:40 +08:00
uc_reg_read(uc, UC_X86_REG_ESP, &esp);
uc_mem_read(uc, esp, &return_address, 4);
2025-03-06 18:39:01 +08:00
2025-03-09 03:19:40 +08:00
uint32_t return_address_32;
uc_mem_read(uc, esp, &return_address_32, 4);
printf("return_address_32: %x\n", return_address_32);
2025-03-06 18:39:01 +08:00
// x86下所有参数都通过栈传递
// 调整栈指针每个参数4字节 + 返回地址4字节
2025-03-09 03:19:40 +08:00
esp += (paramCount * 4) + 4;
2025-03-06 18:39:01 +08:00
// 设置EIP为返回地址
uc_reg_write(uc, UC_X86_REG_EIP, &return_address_32);
}
2025-03-09 03:19:40 +08:00
if (this->GetPeInfo()->isX64) {
uc_reg_write(uc, UC_X86_REG_RSP, &rsp);
} else {
uc_reg_write(uc, UC_X86_REG_ESP, &esp);
}
2025-03-06 18:39:01 +08:00
return;
}
printf("ApiName: %s not found\n", ApiName.c_str());
uc_emu_stop(uc);
return;
}