Files
awesome_anti_virus_engine/ai_anti_malware/sandbox_api_emu.cpp

1322 lines
47 KiB
C++
Raw Normal View History

2025-03-06 18:39:01 +08:00
#include "sandbox.h"
std::string getDllNameFromApiSetMap(const std::string& apiSet);
auto Api_QueryPerformanceCounter(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t return_params_address = 0;
LARGE_INTEGER data;
BOOL origin_return_value = QueryPerformanceCounter(&data);
if (context->GetPeInfo()->isX64) {
uc_reg_read(uc, UC_X86_REG_RCX, &return_params_address);
} else {
uint64_t ebp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &ebp_address);
ebp_address += 0x4;
uc_mem_read(uc, ebp_address, &return_params_address, 0x4);
}
uc_mem_write(uc, return_params_address, &data, sizeof(LARGE_INTEGER));
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&origin_return_value);
}
auto Api_GetSystemTimeAsFileTime(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
uint64_t rcx;
FILETIME file_time;
GetSystemTimeAsFileTime(&file_time);
uc_reg_read(uc, UC_X86_REG_RCX, &rcx);
uc_mem_write(uc, rcx, &file_time, sizeof(FILETIME));
}
void Api_GetCurrentThreadId(void* sandbox, uc_engine* uc, uint64_t address) {
auto context = static_cast<Sandbox*>(sandbox);
if (context->GetPeInfo()->isX64) {
uc_reg_write(uc, UC_X86_REG_RAX,
&context->GetTeb64()->ClientId.UniqueThread);
} else {
uc_reg_write(uc, UC_X86_REG_RAX,
&context->GetTeb32()->ClientId.UniqueThread);
}
}
void Api_GetCurrentProcessId(void* sandbox, uc_engine* uc, uint64_t address) {
auto context = static_cast<Sandbox*>(sandbox);
if (context->GetPeInfo()->isX64) {
uc_reg_write(uc, UC_X86_REG_RAX,
&context->GetTeb64()->ClientId.UniqueProcess);
} else {
uc_reg_write(uc, UC_X86_REG_RAX,
&context->GetTeb32()->ClientId.UniqueProcess);
}
}
auto Api_LoadLibraryA(void* sandbox, uc_engine* uc, uint64_t address) -> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t params_address = 0;
// 获取参数地址
if (context->GetPeInfo()->isX64) {
uc_reg_read(uc, UC_X86_REG_RCX, &params_address);
} else {
uint64_t ebp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &ebp_address);
ebp_address += 0x4;
uc_mem_read(uc, ebp_address, &params_address, 0x4);
}
uint64_t return_address = 0;
std::string module_name;
char buffer[MAX_PATH];
size_t i = 0;
// 读取模块名称
if (params_address != 0) {
do {
uint8_t byte;
uc_mem_read(uc, params_address + i, &byte, 1);
buffer[i] = byte;
i++;
} while (buffer[i - 1] != 0 && i < MAX_PATH);
if (i > 0 && i < MAX_PATH) {
module_name = std::string(buffer);
// 确保模块名以.dll结尾不区分大小写
if (module_name.length() > 4) {
std::string ext = module_name.substr(module_name.length() - 4);
if (_stricmp(ext.c_str(), ".dll") != 0) {
module_name += ".dll";
}
} else {
module_name += ".dll";
}
std::string fuck_up_api_ms = module_name;
if (fuck_up_api_ms.find("api-ms-") != std::string::npos) {
module_name = getDllNameFromApiSetMap(fuck_up_api_ms);
if (module_name.size() <= 1) __debugbreak();
}
// 从模块列表中查找对应模块
for (const auto& module : context->GetModuleList()) {
if (_stricmp((*module).name, module_name.c_str()) == 0) {
return_address = (*module).base;
break;
}
}
}
}
printf("[*] LoadLibraryA: Module=%s, Base=0x%llx\n", module_name.c_str(),
return_address);
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&return_address);
}
auto Api_LoadLibraryExW(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t module_name_address = 0;
uint64_t flags = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = lpLibFileName, r8 = dwFlags
uc_reg_read(uc, UC_X86_REG_RCX, &module_name_address);
uc_reg_read(uc, UC_X86_REG_R8, &flags);
} else {
// x86: 从栈上读取参数
uint64_t esp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &module_name_address, 0x4);
esp_address += 0x8; // 跳过hFile参数
uc_mem_read(uc, esp_address, &flags, 0x4);
}
uint64_t return_address = 0;
std::wstring module_name;
wchar_t buffer[MAX_PATH];
size_t i = 0;
bool isApiSetMapMeme = false;
// 读取宽字符模块名称
if (module_name_address != 0) {
do {
uint16_t wchar;
uc_mem_read(uc, module_name_address + (i * 2), &wchar, 2);
buffer[i] = wchar;
i++;
} while (buffer[i - 1] != 0 && i < MAX_PATH);
if (i > 0 && i < MAX_PATH) {
module_name = std::wstring(buffer);
std::string ansi_name(module_name.begin(), module_name.end());
std::string fuck_up_api_ms = ansi_name;
if (ansi_name.length() > 4) {
std::string ext = ansi_name.substr(ansi_name.length() - 4);
if (_stricmp(ext.c_str(), ".dll") != 0) {
ansi_name += ".dll";
}
} else {
ansi_name += ".dll";
}
if (ansi_name.find("api-ms-") != std::string::npos) {
ansi_name = getDllNameFromApiSetMap(ansi_name);
isApiSetMapMeme = true;
// if (ansi_name.size() <= 1) __debugbreak();
}
// 从模块列表中查找对应模块
for (const auto& module : context->GetModuleList()) {
if (_stricmp((*module).name, ansi_name.c_str()) == 0) {
return_address = (*module).base;
break;
}
}
}
}
printf("[*] LoadLibraryExW: Module=%ls, Flags=0x%llx, Base=0x%llx\n",
module_name.c_str(), flags, return_address);
if (return_address == 0 && isApiSetMapMeme) {
// 找不到就不管他了,操
return_address = 0x1337;
}
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&return_address);
}
void Api_GetLastError(void* sandbox, uc_engine* uc, uint64_t address) {
auto context = static_cast<Sandbox*>(sandbox);
DWORD last_error = 0;
// 从TEB中获取LastError
if (context->GetPeInfo()->isX64) {
last_error = context->GetTeb64()->LastErrorValue;
} else {
last_error = context->GetTeb32()->LastErrorValue;
}
printf("[*] GetLastError: LastError=0x%x\n", last_error);
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&last_error);
}
auto Api_InitializeCriticalSectionAndSpinCount(void* sandbox, uc_engine* uc,
uint64_t address) -> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t lpCriticalSection = 0;
uint32_t dwSpinCount = 0;
BOOL success = TRUE; // 默认返回成功
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = lpCriticalSection, rdx = dwSpinCount
uc_reg_read(uc, UC_X86_REG_RCX, &lpCriticalSection);
uint64_t temp_spin_count = 0;
uc_reg_read(uc, UC_X86_REG_RDX, &temp_spin_count);
dwSpinCount = static_cast<uint32_t>(temp_spin_count);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uint32_t temp_cs = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &temp_cs, sizeof(uint32_t));
lpCriticalSection = temp_cs;
esp_address += 0x4;
uc_mem_read(uc, esp_address, &dwSpinCount, sizeof(uint32_t));
}
if (lpCriticalSection != 0) {
// 初始化关键段结构
RTL_CRITICAL_SECTION cs = {0};
cs.LockCount = -1; // 初始未锁定状态
cs.RecursionCount = 0; // 初始递归计数为0
cs.SpinCount = dwSpinCount; // 设置自旋计数
cs.OwningThread = 0; // 初始无拥有线程
cs.LockSemaphore = 0; // 初始信号量为0
// 写入初始化后的结构到目标内存
uc_mem_write(uc, lpCriticalSection, &cs, sizeof(RTL_CRITICAL_SECTION));
} else {
success = FALSE;
// 设置LastError
DWORD error = ERROR_INVALID_PARAMETER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
}
printf(
"[*] InitializeCriticalSectionAndSpinCount: CS=0x%llx, SpinCount=0x%x, "
"Success=%d\n",
lpCriticalSection, dwSpinCount, success);
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&success);
}
auto Api_TlsAlloc(void* sandbox, uc_engine* uc, uint64_t address) -> void {
auto context = static_cast<Sandbox*>(sandbox);
DWORD tls_index = TLS_OUT_OF_INDEXES; // 默认返回失败值
// 获取TEB结构
if (context->GetPeInfo()->isX64) {
auto teb = context->GetTeb64();
// 在TLS槽中查找第一个可用的位置
for (DWORD i = 0; i < 64; i++) { // TEB中TlsSlots数组大小为64
2025-03-06 20:08:12 +08:00
if (teb->TlsSlots[i] == (void*)0x1337ffffff) {
teb->TlsSlots[i] = (void*)0; // 标记为已使用
2025-03-06 18:39:01 +08:00
tls_index = i;
break;
}
}
} else {
auto teb = context->GetTeb32();
// 在TLS槽中查找第一个可用的位置
for (DWORD i = 0; i < 64; i++) { // TEB中TlsSlots数组大小为64
2025-03-06 20:08:12 +08:00
if (teb->TlsSlots[i] == 0x1337) {
teb->TlsSlots[i] = 0; // 标记为已使用
2025-03-06 18:39:01 +08:00
tls_index = i;
break;
}
}
}
if (tls_index == TLS_OUT_OF_INDEXES) {
// 设置LastError为没有可用的TLS索引
DWORD error = ERROR_NO_MORE_ITEMS;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
}
printf("[*] TlsAlloc: Allocated TLS Index=0x%x\n", tls_index);
// 返回分配的TLS索引
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&tls_index);
}
auto Api_TlsSetValue(void* sandbox, uc_engine* uc, uint64_t address) -> void {
auto context = static_cast<Sandbox*>(sandbox);
uint32_t dwTlsIndex = 0;
uint64_t lpTlsValue = 0;
BOOL success = FALSE;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = dwTlsIndex, rdx = lpTlsValue
uint64_t temp_index;
uc_reg_read(uc, UC_X86_REG_RCX, &temp_index);
dwTlsIndex = static_cast<uint32_t>(temp_index);
uc_reg_read(uc, UC_X86_REG_RDX, &lpTlsValue);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &dwTlsIndex, sizeof(uint32_t));
esp_address += 0x4;
uint32_t temp_value;
uc_mem_read(uc, esp_address, &temp_value, sizeof(uint32_t));
lpTlsValue = temp_value;
}
// 检查索引是否有效小于64
if (dwTlsIndex < 64) {
if (context->GetPeInfo()->isX64) {
auto teb = context->GetTeb64();
// 检查槽是否已分配不为nullptr
2025-03-06 20:08:12 +08:00
if (teb->TlsSlots[dwTlsIndex] != (void*)0x1337ffffff) {
2025-03-06 18:39:01 +08:00
teb->TlsSlots[dwTlsIndex] = (void*)lpTlsValue;
success = TRUE;
}
} else {
auto teb = context->GetTeb32();
// 检查槽是否已分配不为0
2025-03-06 20:08:12 +08:00
if (teb->TlsSlots[dwTlsIndex] != 0x1337) {
2025-03-06 18:39:01 +08:00
teb->TlsSlots[dwTlsIndex] = static_cast<uint32_t>(lpTlsValue);
success = TRUE;
}
}
}
if (!success) {
// 设置LastError
DWORD error = ERROR_INVALID_PARAMETER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
}
printf("[*] TlsSetValue: Index=0x%x, Value=0x%llx, Success=%d\n",
dwTlsIndex, lpTlsValue, success);
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&success);
}
auto Api_DeleteCriticalSection(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t lpCriticalSection = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = lpCriticalSection
uc_reg_read(uc, UC_X86_REG_RCX, &lpCriticalSection);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uint32_t temp_cs = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &temp_cs, sizeof(uint32_t));
lpCriticalSection = temp_cs;
}
if (lpCriticalSection != 0) {
// 读取现有的关键段结构
RTL_CRITICAL_SECTION cs;
uc_mem_read(uc, lpCriticalSection, &cs, sizeof(RTL_CRITICAL_SECTION));
// 检查是否有线程仍在等待
if (cs.LockCount >= 0) {
// 有线程正在等待,设置错误
DWORD error = ERROR_SEM_IS_SET;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
}
// 清零内存,表示删除
memset(&cs, 0, sizeof(RTL_CRITICAL_SECTION));
uc_mem_write(uc, lpCriticalSection, &cs, sizeof(RTL_CRITICAL_SECTION));
}
printf("[*] DeleteCriticalSection: CS=0x%llx\n", lpCriticalSection);
}
auto Api_IsProcessorFeaturePresent(void* sandbox, uc_engine* uc,
uint64_t address) -> void {
auto context = static_cast<Sandbox*>(sandbox);
uint32_t feature_number = 0;
BOOL is_supported = FALSE;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = FeatureNumber
uint64_t temp_feature;
uc_reg_read(uc, UC_X86_REG_RCX, &temp_feature);
feature_number = static_cast<uint32_t>(temp_feature);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &feature_number, sizeof(uint32_t));
}
// 模拟一些常见的处理器特性
switch (feature_number) {
case PF_FLOATING_POINT_PRECISION_ERRATA: // 0
is_supported = FALSE;
break;
case PF_FLOATING_POINT_EMULATED: // 1
is_supported = FALSE;
break;
case PF_COMPARE_EXCHANGE_DOUBLE: // 2
is_supported = TRUE;
break;
case PF_MMX_INSTRUCTIONS_AVAILABLE: // 3
is_supported = TRUE;
break;
case PF_XMMI_INSTRUCTIONS_AVAILABLE: // 6
is_supported = TRUE;
break;
case PF_3DNOW_INSTRUCTIONS_AVAILABLE: // 7
is_supported = FALSE;
break;
case PF_RDTSC_INSTRUCTION_AVAILABLE: // 8
is_supported = TRUE;
break;
case PF_PAE_ENABLED: // 9
is_supported = TRUE;
break;
case PF_XMMI64_INSTRUCTIONS_AVAILABLE: // 10
is_supported = TRUE;
break;
case PF_SSE_DAZ_MODE_AVAILABLE: // 11
is_supported = TRUE;
break;
case PF_NX_ENABLED: // 12
is_supported = TRUE;
break;
case PF_SSE3_INSTRUCTIONS_AVAILABLE: // 13
is_supported = TRUE;
break;
case PF_COMPARE_EXCHANGE128: // 14
is_supported = TRUE;
break;
case PF_XSAVE_ENABLED: // 17
is_supported = TRUE;
break;
case PF_ARM_VFP_32_REGISTERS_AVAILABLE: // 18
is_supported = FALSE;
break;
default:
is_supported = FALSE;
break;
}
printf("[*] IsProcessorFeaturePresent: Feature=0x%x, Supported=%d\n",
feature_number, is_supported);
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&is_supported);
}
auto Api_GetProcAddress(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t moduleHandle = 0;
uint64_t functionNameAddr = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = hModule, rdx = lpProcName
uc_reg_read(uc, UC_X86_REG_RCX, &moduleHandle);
uc_reg_read(uc, UC_X86_REG_RDX, &functionNameAddr);
} else {
// x86: 从栈上读取参数
uint64_t esp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uint32_t temp_handle = 0;
uint32_t temp_name_addr = 0;
uc_mem_read(uc, esp_address, &temp_handle, sizeof(uint32_t));
uc_mem_read(uc, esp_address + 0x4, &temp_name_addr, sizeof(uint32_t));
moduleHandle = temp_handle;
functionNameAddr = temp_name_addr;
}
uint64_t return_address = 0;
// 读取函数名
if (functionNameAddr == 0) {
__debugbreak();
}
// 通过名称查找
char functionName[256] = {0};
size_t i = 0;
do {
uint8_t byte;
uc_mem_read(uc, functionNameAddr + i, &byte, 1);
functionName[i] = byte;
i++;
} while (functionName[i - 1] != 0 && i < sizeof(functionName));
// 在模块列表中查找对应模块
for (const auto& module : context->GetModuleList()) {
if (module->base == moduleHandle) {
// 遍历导出函数查找对应名称
for (const auto& exp : module->export_function) {
// 使用 _stricmp 进行大小写不敏感的比较
if (_stricmp(exp->name, functionName) == 0) {
return_address = module->base + exp->function_address;
break;
}
}
break;
}
}
printf("[*] GetProcAddress: Module=0x%llx, Function=%s, Address=0x%llx\n",
moduleHandle, functionName, return_address);
// 设置返回值
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&return_address);
}
auto Api_GetProcessHeap(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
// 返回默认堆句柄(使用堆基址作为句柄)
uint64_t heap_handle =
context->GetPeInfo()->isX64 ? HEAP_ADDRESS_64 : HEAP_ADDRESS_32;
printf("[*] GetProcessHeap: Handle=0x%llx\n", heap_handle);
// 返回堆句柄
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&heap_handle);
}
// 实现HeapAlloc API
auto Api_HeapAlloc(void* sandbox, uc_engine* uc, uint64_t address) -> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t hHeap = 0;
uint32_t dwFlags = 0;
uint64_t dwBytes = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = hHeap, rdx = dwFlags, r8 = dwBytes
uc_reg_read(uc, UC_X86_REG_RCX, &hHeap);
uint64_t temp_flags;
uc_reg_read(uc, UC_X86_REG_RDX, &temp_flags);
dwFlags = static_cast<uint32_t>(temp_flags);
uc_reg_read(uc, UC_X86_REG_R8, &dwBytes);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uint32_t temp_heap;
uc_mem_read(uc, esp_address, &temp_heap, sizeof(uint32_t));
hHeap = temp_heap;
esp_address += 0x4;
uc_mem_read(uc, esp_address, &dwFlags, sizeof(uint32_t));
esp_address += 0x4;
uint32_t temp_bytes;
uc_mem_read(uc, esp_address, &temp_bytes, sizeof(uint32_t));
dwBytes = temp_bytes;
}
// 检查堆句柄是否有效
uint64_t expected_handle =
context->GetPeInfo()->isX64 ? HEAP_ADDRESS_64 : HEAP_ADDRESS_32;
if (hHeap != expected_handle) {
uint64_t null_ptr = 0;
uc_reg_write(
uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&null_ptr);
return;
}
// 获取或创建堆段
HeapSegment* segment = nullptr;
auto it = context->m_heapSegments.find(hHeap);
if (it == context->m_heapSegments.end()) {
segment = context->CreateHeapSegment(
hHeap, context->GetPeInfo()->isX64 ? HEAP_SIZE_64 : HEAP_SIZE_32);
context->m_heapSegments[hHeap] = segment;
} else {
segment = it->second;
}
// 分配内存
uint64_t allocated_address = context->AllocateFromSegment(segment, dwBytes);
printf(
"[*] HeapAlloc: Handle=0x%llx, Flags=0x%x, Size=0x%llx, "
"Address=0x%llx\n",
hHeap, dwFlags, dwBytes, allocated_address);
// 返回分配的地址
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&allocated_address);
}
// 实现HeapFree API
auto Api_HeapFree(void* sandbox, uc_engine* uc, uint64_t address) -> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t hHeap = 0;
uint32_t dwFlags = 0;
uint64_t lpMem = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = hHeap, rdx = dwFlags, r8 = lpMem
uc_reg_read(uc, UC_X86_REG_RCX, &hHeap);
uint64_t temp_flags;
uc_reg_read(uc, UC_X86_REG_RDX, &temp_flags);
dwFlags = static_cast<uint32_t>(temp_flags);
uc_reg_read(uc, UC_X86_REG_R8, &lpMem);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uint32_t temp_heap;
uc_mem_read(uc, esp_address, &temp_heap, sizeof(uint32_t));
hHeap = temp_heap;
esp_address += 0x4;
uc_mem_read(uc, esp_address, &dwFlags, sizeof(uint32_t));
esp_address += 0x4;
uint32_t temp_mem;
uc_mem_read(uc, esp_address, &temp_mem, sizeof(uint32_t));
lpMem = temp_mem;
}
// 释放内存
bool success = context->FreeBlock(lpMem);
printf(
"[*] HeapFree: Handle=0x%llx, Flags=0x%x, Address=0x%llx, Success=%d\n",
hHeap, dwFlags, lpMem, success);
// 返回操作是否成功
uint64_t result = success ? 1 : 0;
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
}
// 实现TlsGetValue API
auto Api_TlsGetValue(void* sandbox, uc_engine* uc, uint64_t address) -> void {
auto context = static_cast<Sandbox*>(sandbox);
uint32_t dwTlsIndex = 0;
uint64_t return_value = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = dwTlsIndex
uint64_t temp_index;
uc_reg_read(uc, UC_X86_REG_RCX, &temp_index);
dwTlsIndex = static_cast<uint32_t>(temp_index);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &dwTlsIndex, sizeof(uint32_t));
}
// 检查索引是否有效小于64
if (dwTlsIndex < 64) {
if (context->GetPeInfo()->isX64) {
auto teb = context->GetTeb64();
// 检查槽是否已分配不为nullptr
2025-03-06 20:08:12 +08:00
if (teb->TlsSlots[dwTlsIndex] != (void*)0x1337ffffff) {
2025-03-06 18:39:01 +08:00
return_value =
reinterpret_cast<uint64_t>(teb->TlsSlots[dwTlsIndex]);
} else {
// 槽未分配设置LastError
DWORD error = ERROR_INVALID_PARAMETER;
teb->LastErrorValue = error;
}
} else {
auto teb = context->GetTeb32();
// 检查槽是否已分配不为0
2025-03-06 20:08:12 +08:00
if (teb->TlsSlots[dwTlsIndex] != 0x1337) {
2025-03-06 18:39:01 +08:00
return_value = teb->TlsSlots[dwTlsIndex];
} else {
// 槽未分配设置LastError
DWORD error = ERROR_INVALID_PARAMETER;
teb->LastErrorValue = error;
}
}
} else {
// 索引无效设置LastError
DWORD error = ERROR_INVALID_PARAMETER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
}
printf("[*] TlsGetValue: Index=0x%x, Value=0x%llx\n", dwTlsIndex,
return_value);
// 返回TLS槽中的值
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&return_value);
}
auto Api_SetLastError(void* sandbox, uc_engine* uc, uint64_t address) -> void {
auto context = static_cast<Sandbox*>(sandbox);
uint32_t dwErrCode = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = dwErrCode
uint64_t temp_error;
uc_reg_read(uc, UC_X86_REG_RCX, &temp_error);
dwErrCode = static_cast<uint32_t>(temp_error);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &dwErrCode, sizeof(uint32_t));
}
// 设置LastError值
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = dwErrCode;
} else {
context->GetTeb32()->LastErrorValue = dwErrCode;
}
printf("[*] SetLastError: Error=0x%x\n", dwErrCode);
}
auto Api_EnterCriticalSection(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t lpCriticalSection = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = lpCriticalSection
uc_reg_read(uc, UC_X86_REG_RCX, &lpCriticalSection);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uint32_t temp_cs = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &temp_cs, sizeof(uint32_t));
lpCriticalSection = temp_cs;
}
if (lpCriticalSection != 0) {
RTL_CRITICAL_SECTION cs;
uc_mem_read(uc, lpCriticalSection, &cs, sizeof(RTL_CRITICAL_SECTION));
// 获取当前线程ID
HANDLE currentThreadHandle = nullptr;
if (context->GetPeInfo()->isX64) {
currentThreadHandle =
(HANDLE)(ULONG_PTR)context->GetTeb64()->ClientId.UniqueThread;
} else {
currentThreadHandle =
(HANDLE)(ULONG_PTR)context->GetTeb32()->ClientId.UniqueThread;
}
// 如果当前线程已经拥有锁,增加递归计数
if (cs.OwningThread == currentThreadHandle) {
cs.RecursionCount++;
} else {
// 如果没有线程拥有锁,获取它
if (cs.LockCount == -1) {
cs.OwningThread = currentThreadHandle;
cs.RecursionCount = 1;
cs.LockCount = 0;
} else {
// 在实际情况下这里应该自旋等待,但在模拟环境中我们直接获取锁
cs.OwningThread = currentThreadHandle;
cs.RecursionCount = 1;
cs.LockCount++;
}
}
// 写回更新后的关键段结构
uc_mem_write(uc, lpCriticalSection, &cs, sizeof(RTL_CRITICAL_SECTION));
}
printf("[*] EnterCriticalSection: CS=0x%llx\n", lpCriticalSection);
}
auto Api_LeaveCriticalSection(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t lpCriticalSection = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = lpCriticalSection
uc_reg_read(uc, UC_X86_REG_RCX, &lpCriticalSection);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uint32_t temp_cs = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &temp_cs, sizeof(uint32_t));
lpCriticalSection = temp_cs;
}
if (lpCriticalSection != 0) {
RTL_CRITICAL_SECTION cs;
uc_mem_read(uc, lpCriticalSection, &cs, sizeof(RTL_CRITICAL_SECTION));
// 获取当前线程ID
HANDLE currentThreadHandle = nullptr;
if (context->GetPeInfo()->isX64) {
currentThreadHandle =
(HANDLE)(ULONG_PTR)context->GetTeb64()->ClientId.UniqueThread;
} else {
currentThreadHandle =
(HANDLE)(ULONG_PTR)context->GetTeb32()->ClientId.UniqueThread;
}
// 检查当前线程是否拥有锁
if (cs.OwningThread == currentThreadHandle) {
cs.RecursionCount--;
if (cs.RecursionCount == 0) {
// 完全释放锁
cs.OwningThread = nullptr;
cs.LockCount = -1;
}
// 写回更新后的关键段结构
uc_mem_write(uc, lpCriticalSection, &cs,
sizeof(RTL_CRITICAL_SECTION));
}
}
printf("[*] LeaveCriticalSection: CS=0x%llx\n", lpCriticalSection);
}
auto Api_GetStartupInfoW(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t lpStartupInfo = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = lpStartupInfo
uc_reg_read(uc, UC_X86_REG_RCX, &lpStartupInfo);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uint32_t temp_info = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &temp_info, sizeof(uint32_t));
lpStartupInfo = temp_info;
}
if (lpStartupInfo != 0) {
// 创建一个默认的 STARTUPINFOW 结构
STARTUPINFOW si = {0};
si.cb = sizeof(STARTUPINFOW);
si.dwFlags = STARTF_USESHOWWINDOW;
si.wShowWindow = SW_SHOWNORMAL;
si.lpDesktop = nullptr;
si.lpTitle = nullptr;
si.dwX = 0;
si.dwY = 0;
si.dwXSize = 0;
si.dwYSize = 0;
si.dwXCountChars = 0;
si.dwYCountChars = 0;
si.dwFillAttribute = 0;
si.cbReserved2 = 0;
si.lpReserved2 = nullptr;
si.hStdInput = nullptr;
si.hStdOutput = nullptr;
si.hStdError = nullptr;
// 写入结构到目标内存
uc_mem_write(uc, lpStartupInfo, &si, sizeof(STARTUPINFOW));
}
printf("[*] GetStartupInfoW: lpStartupInfo=0x%llx\n", lpStartupInfo);
}
// 实现 GetStdHandle API
auto Api_GetStdHandle(void* sandbox, uc_engine* uc, uint64_t address) -> void {
auto context = static_cast<Sandbox*>(sandbox);
int32_t nStdHandle = 0;
HANDLE handle = INVALID_HANDLE_VALUE;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = nStdHandle
uint64_t temp_handle;
uc_reg_read(uc, UC_X86_REG_RCX, &temp_handle);
nStdHandle = static_cast<int32_t>(temp_handle);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &nStdHandle, sizeof(int32_t));
}
// 根据请求的标准句柄类型返回相应的句柄
switch ((unsigned long)nStdHandle) {
case STD_INPUT_HANDLE: // -10
handle = reinterpret_cast<HANDLE>(0x1000); // 模拟标准输入句柄
break;
case STD_OUTPUT_HANDLE: // -11
handle = reinterpret_cast<HANDLE>(0x2000); // 模拟标准输出句柄
break; // End of Selection
break;
case STD_ERROR_HANDLE: // -12
handle = reinterpret_cast<HANDLE>(0x3000); // 模拟标准错误句柄
break;
default:
handle = INVALID_HANDLE_VALUE;
// 设置错误码
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = ERROR_INVALID_PARAMETER;
} else {
context->GetTeb32()->LastErrorValue = ERROR_INVALID_PARAMETER;
}
break;
}
printf("[*] GetStdHandle: Type=%d, Handle=0x%p\n", nStdHandle, handle);
// 返回句柄值
uint64_t return_value = reinterpret_cast<uint64_t>(handle);
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&return_value);
}
// 实现 GetFileType API
auto Api_GetFileType(void* sandbox, uc_engine* uc, uint64_t address) -> void {
auto context = static_cast<Sandbox*>(sandbox);
HANDLE hFile = nullptr;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = hFile
uint64_t temp_handle;
uc_reg_read(uc, UC_X86_REG_RCX, &temp_handle);
hFile = reinterpret_cast<HANDLE>(temp_handle);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uint32_t temp_handle = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &temp_handle, sizeof(uint32_t));
hFile = reinterpret_cast<HANDLE>(static_cast<uint64_t>(temp_handle));
}
DWORD file_type = FILE_TYPE_UNKNOWN;
// 根据标准句柄类型返回相应的文件类型
if (hFile == reinterpret_cast<HANDLE>(0x1000) || // STD_INPUT_HANDLE
hFile == reinterpret_cast<HANDLE>(0x2000) || // STD_OUTPUT_HANDLE
hFile == reinterpret_cast<HANDLE>(0x3000)) { // STD_ERROR_HANDLE
file_type = FILE_TYPE_CHAR; // 控制台句柄通常是字符设备
} else {
// 对于无效句柄,设置错误码
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = ERROR_INVALID_HANDLE;
} else {
context->GetTeb32()->LastErrorValue = ERROR_INVALID_HANDLE;
}
file_type = FILE_TYPE_UNKNOWN;
}
printf("[*] GetFileType: Handle=0x%p, Type=0x%x\n", hFile, file_type);
// 返回文件类型
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&file_type);
}
// 实现 GetCommandLineA API
auto Api_GetCommandLineA(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
printf("[*] GetCommandLineA: CommandLine=%s\n", context->GetCommandLine());
// 返回命令行字符串的地址
uint64_t return_value = context->GetCommandLineAddress();
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&return_value);
}
// 实现 GetCommandLineW API
auto Api_GetCommandLineW(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
printf("[*] GetCommandLineW: CommandLine=%s\n", context->GetCommandLine());
// 返回宽字符命令行字符串的地址
uint64_t return_value = context->GetCommandLineWAddress();
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&return_value);
}
auto Sandbox::CreateHeapSegment(uint64_t base, size_t size) -> HeapSegment* {
auto segment = new HeapSegment();
segment->base = base;
segment->size = size;
// 创建初始空闲块
auto block = new HeapBlock();
block->address = base;
block->size = size;
block->is_free = true;
block->next = nullptr;
block->prev = nullptr;
segment->blocks = block;
return segment;
}
auto Sandbox::AllocateFromSegment(HeapSegment* segment, size_t size)
-> uint64_t {
// 对齐大小到16字节
size = (size + 15) & ~15;
// 查找合适的空闲块
HeapBlock* current = segment->blocks;
while (current != nullptr) {
if (current->is_free && current->size >= size) {
// 如果块太大,分割它
if (current->size > size + 32) { // 32字节为最小块大小
SplitBlock(current, size);
}
current->is_free = false;
return current->address;
}
current = current->next;
}
return 0; // 分配失败
}
auto Sandbox::FreeBlock(uint64_t address) -> bool {
// 查找包含此地址的堆段
HeapSegment* segment = FindHeapSegment(address);
if (!segment) return false;
// 查找对应的块
HeapBlock* current = segment->blocks;
while (current != nullptr) {
if (current->address == address) {
if (current->is_free) return false; // 已经是空闲的
current->is_free = true;
MergeBlocks(current); // 尝试合并相邻的空闲块
return true;
}
current = current->next;
}
return false;
}
auto Sandbox::FindHeapSegment(uint64_t address) -> HeapSegment* {
for (auto& pair : m_heapSegments) {
HeapSegment* segment = pair.second;
if (address >= segment->base &&
address < segment->base + segment->size) {
return segment;
}
}
return nullptr;
}
auto Sandbox::MergeBlocks(HeapBlock* block) -> void {
// 与后一个块合并
if (block->next && block->next->is_free) {
block->size += block->next->size;
HeapBlock* temp = block->next;
block->next = temp->next;
if (block->next) {
block->next->prev = block;
}
delete temp;
}
// 与前一个块合并
if (block->prev && block->prev->is_free) {
block->prev->size += block->size;
block->prev->next = block->next;
if (block->next) {
block->next->prev = block->prev;
}
delete block;
}
}
auto Sandbox::SplitBlock(HeapBlock* block, size_t size) -> void {
size_t remaining_size = block->size - size;
block->size = size;
auto new_block = new HeapBlock();
new_block->address = block->address + size;
new_block->size = remaining_size;
new_block->is_free = true;
new_block->next = block->next;
new_block->prev = block;
if (block->next) {
block->next->prev = new_block;
}
block->next = new_block;
}
auto Sandbox::InitCommandLine(std::string commandLine) -> void {
// 设置默认的命令行字符串
m_commandLine = commandLine;
// 将ANSI命令行字符串写入模拟内存
uc_mem_map(m_ucEngine, CMDLINE_ADDRESS, PAGE_SIZE,
UC_PROT_READ | UC_PROT_WRITE);
uc_mem_write(m_ucEngine, CMDLINE_ADDRESS, m_commandLine.c_str(),
m_commandLine.length() + 1);
// 为宽字符命令行分配内存
uc_mem_map(m_ucEngine, CMDLINEW_ADDRESS, PAGE_SIZE,
UC_PROT_READ | UC_PROT_WRITE);
// 将ANSI字符串转换为宽字符字符串
std::wstring wCommandLine(m_commandLine.begin(), m_commandLine.end());
// 写入宽字符命令行字符串
uc_mem_write(m_ucEngine, CMDLINEW_ADDRESS, wCommandLine.c_str(),
(wCommandLine.length() + 1) * sizeof(wchar_t));
}
auto Sandbox::InitApiHooks() -> void {
auto FakeApi_GetSystemTimeAsFileTime =
_fakeApi{.func = Api_GetSystemTimeAsFileTime, .paramCount = 1};
auto FakeApi_GetCurrentThreadId =
_fakeApi{.func = Api_GetCurrentThreadId, .paramCount = 0};
auto FakeApi_GetCurrentProcessId =
_fakeApi{.func = Api_GetCurrentProcessId, .paramCount = 0};
auto FakeApi_QueryPerformanceCounter =
_fakeApi{.func = Api_QueryPerformanceCounter, .paramCount = 1};
auto FakeApi_LoadLibraryA =
_fakeApi{.func = Api_LoadLibraryA, .paramCount = 1};
auto FakeApi_LoadLibraryExW =
_fakeApi{.func = Api_LoadLibraryExW, .paramCount = 3};
auto FakeApi_GetLastError =
_fakeApi{.func = Api_GetLastError, .paramCount = 0};
auto FakeApi_InitializeCriticalSectionAndSpinCount = _fakeApi{
.func = Api_InitializeCriticalSectionAndSpinCount, .paramCount = 2};
auto FakeApi_TlsAlloc = _fakeApi{.func = Api_TlsAlloc, .paramCount = 0};
auto FakeApi_TlsSetValue =
_fakeApi{.func = Api_TlsSetValue, .paramCount = 2};
auto FakeApi_DeleteCriticalSection =
_fakeApi{.func = Api_DeleteCriticalSection, .paramCount = 1};
auto FakeApi_IsProcessorFeaturePresent =
_fakeApi{.func = Api_IsProcessorFeaturePresent, .paramCount = 1};
auto FakeApi_GetProcAddress =
_fakeApi{.func = Api_GetProcAddress, .paramCount = 2};
auto FakeApi_GetProcessHeap =
_fakeApi{.func = Api_GetProcessHeap, .paramCount = 0};
auto FakeApi_HeapAlloc = _fakeApi{.func = Api_HeapAlloc, .paramCount = 3};
auto FakeApi_HeapFree = _fakeApi{.func = Api_HeapFree, .paramCount = 3};
auto FakeApi_TlsGetValue =
_fakeApi{.func = Api_TlsGetValue, .paramCount = 1};
auto FakeApi_SetLastError =
_fakeApi{.func = Api_SetLastError, .paramCount = 1};
auto FakeApi_EnterCriticalSection =
_fakeApi{.func = Api_EnterCriticalSection, .paramCount = 1};
auto FakeApi_LeaveCriticalSection =
_fakeApi{.func = Api_LeaveCriticalSection, .paramCount = 1};
auto FakeApi_GetStartupInfoW =
_fakeApi{.func = Api_GetStartupInfoW, .paramCount = 1};
auto FakeApi_GetStdHandle =
_fakeApi{.func = Api_GetStdHandle, .paramCount = 1};
auto FakeApi_GetFileType =
_fakeApi{.func = Api_GetFileType, .paramCount = 1};
auto FakeApi_GetCommandLineA =
_fakeApi{.func = Api_GetCommandLineA, .paramCount = 0};
auto FakeApi_GetCommandLineW =
_fakeApi{.func = Api_GetCommandLineW, .paramCount = 0};
api_map = {
{"GetSystemTimeAsFileTime",
std::make_shared<_fakeApi>(FakeApi_GetSystemTimeAsFileTime)},
{"GetCurrentThreadId",
std::make_shared<_fakeApi>(FakeApi_GetCurrentThreadId)},
{"GetCurrentProcessId",
std::make_shared<_fakeApi>(FakeApi_GetCurrentProcessId)},
{"QueryPerformanceCounter",
std::make_shared<_fakeApi>(FakeApi_QueryPerformanceCounter)},
{"LoadLibraryA", std::make_shared<_fakeApi>(FakeApi_LoadLibraryA)},
{"LoadLibraryExW", std::make_shared<_fakeApi>(FakeApi_LoadLibraryExW)},
{"GetLastError", std::make_shared<_fakeApi>(FakeApi_GetLastError)},
{"InitializeCriticalSectionAndSpinCount",
std::make_shared<_fakeApi>(
FakeApi_InitializeCriticalSectionAndSpinCount)},
{"DeleteCriticalSection",
std::make_shared<_fakeApi>(FakeApi_DeleteCriticalSection)},
{"TlsAlloc", std::make_shared<_fakeApi>(FakeApi_TlsAlloc)},
{"TlsSetValue", std::make_shared<_fakeApi>(FakeApi_TlsSetValue)},
{"IsProcessorFeaturePresent",
std::make_shared<_fakeApi>(FakeApi_IsProcessorFeaturePresent)},
{"GetProcAddress", std::make_shared<_fakeApi>(FakeApi_GetProcAddress)},
{"GetProcessHeap", std::make_shared<_fakeApi>(FakeApi_GetProcessHeap)},
{"HeapAlloc", std::make_shared<_fakeApi>(FakeApi_HeapAlloc)},
{"HeapFree", std::make_shared<_fakeApi>(FakeApi_HeapFree)},
{"TlsGetValue", std::make_shared<_fakeApi>(FakeApi_TlsGetValue)},
{"SetLastError", std::make_shared<_fakeApi>(FakeApi_SetLastError)},
{"EnterCriticalSection",
std::make_shared<_fakeApi>(FakeApi_EnterCriticalSection)},
{"LeaveCriticalSection",
std::make_shared<_fakeApi>(FakeApi_LeaveCriticalSection)},
{"GetStartupInfoW",
std::make_shared<_fakeApi>(FakeApi_GetStartupInfoW)},
{"GetStdHandle", std::make_shared<_fakeApi>(FakeApi_GetStdHandle)},
{"GetFileType", std::make_shared<_fakeApi>(FakeApi_GetFileType)},
{"GetCommandLineA",
std::make_shared<_fakeApi>(FakeApi_GetCommandLineA)},
{"GetCommandLineW",
std::make_shared<_fakeApi>(FakeApi_GetCommandLineW)}};
}
auto Sandbox::EmulateApi(uc_engine* uc, uint64_t address, uint64_t rip,
std::string ApiName) -> void {
auto it = api_map.find(ApiName);
if (it != api_map.end()) {
// 调用API函数
it->second->func(this, uc, address);
// 获取参数数量
int paramCount = it->second->paramCount;
// 获取当前的栈指针
uint64_t rsp;
uc_reg_read(uc,
this->GetPeInfo()->isX64 ? UC_X86_REG_RSP : UC_X86_REG_ESP,
&rsp);
// 从栈上读取返回地址
uint64_t return_address;
if (this->GetPeInfo()->isX64) { // 64位系统
// 读取8字节的返回地址
uc_mem_read(uc, rsp, &return_address, 8);
// x64下前4个参数通过寄存器传递超过的部分通过栈传递
int stack_params = (paramCount > 4) ? (paramCount - 4) : 0;
// 调整栈指针每个参数8字节 + 返回地址8字节
rsp += (stack_params * 8) + 8;
// 设置RIP为返回地址
uc_reg_write(uc, UC_X86_REG_RIP, &return_address);
} else { // 32位系统
// 读取4字节的返回地址
uint32_t return_address_32;
uc_mem_read(uc, rsp, &return_address_32, 4);
// x86下所有参数都通过栈传递
// 调整栈指针每个参数4字节 + 返回地址4字节
rsp += (paramCount * 4) + 4;
// 设置EIP为返回地址
uc_reg_write(uc, UC_X86_REG_EIP, &return_address_32);
}
// 更新栈指针,使用正确的寄存器
uc_reg_write(uc,
this->GetPeInfo()->isX64 ? UC_X86_REG_RSP : UC_X86_REG_ESP,
&rsp);
return;
}
printf("ApiName: %s not found\n", ApiName.c_str());
uc_emu_stop(uc);
return;
}