Update project documentation and enhance malware detection engine

- Completely rewrite README.md with comprehensive project overview and technical details
- Add detailed explanation of antivirus engine architecture and detection strategies
- Implement multi-stage malware detection with machine learning, sandbox, and PE structure analysis
- Update project configuration and add new source files for enhanced detection capabilities
- Integrate XGBoost machine learning model with C++ export functionality
- Improve sandbox environment with advanced module and LDR data table handling
- Remove legacy Python prediction and training scripts in favor of C++ implementation
This commit is contained in:
Huoji's
2025-03-09 21:59:22 +08:00
parent 51f929abfa
commit 60c4ef5f58
23 changed files with 46102 additions and 1717 deletions

3
ml/.vscode/settings.json vendored Normal file
View File

@@ -0,0 +1,3 @@
{
"python.analysis.typeCheckingMode": "basic"
}

12257
ml/data/malware_features.csv Normal file

File diff suppressed because it is too large Load Diff

23812
ml/data/whitelist_features.csv Normal file

File diff suppressed because it is too large Load Diff

6623
ml/malware_detector.cpp Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -1,99 +0,0 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import joblib
import pandas as pd
import numpy as np
import sys
import os
def load_model(model_path='xgboost_malware_detector.model'):
"""
加载训练好的模型
"""
print(f"正在加载模型: {model_path}")
try:
model = joblib.load(model_path)
print("模型加载成功!")
return model
except Exception as e:
print(f"模型加载失败: {e}")
return None
def predict_file(model, csv_path):
"""
对单个CSV文件进行预测
"""
try:
# 加载CSV文件
df = pd.read_csv(csv_path)
# 提取特征 (除去第一列文件路径)
features = df.iloc[:, 1:]
# 使用模型预测
predictions = model.predict(features)
probabilities = model.predict_proba(features)
# 添加预测结果到数据框
df['预测标签'] = predictions
df['恶意软件概率'] = probabilities[:, 1]
# 创建结果数据框
results = pd.DataFrame({
'文件路径': df.iloc[:, 0],
'预测标签': predictions,
'恶意软件概率': probabilities[:, 1]
})
# 保存结果到CSV
output_path = os.path.splitext(csv_path)[0] + '_predictions.csv'
results.to_csv(output_path, index=False)
print(f"预测结果已保存到: {output_path}")
# 打印概要
malware_count = len(results[results['预测标签'] == 1])
total_count = len(results)
print(f"总样本数: {total_count}")
print(f"检测为恶意软件: {malware_count} ({malware_count/total_count*100:.2f}%)")
print(f"检测为白名单软件: {total_count - malware_count} ({(total_count-malware_count)/total_count*100:.2f}%)")
return results
except Exception as e:
print(f"预测失败: {e}")
return None
def batch_predict(model, csv_paths):
"""
批量预测多个CSV文件
"""
results = {}
for csv_path in csv_paths:
print(f"\n分析文件: {csv_path}")
result = predict_file(model, csv_path)
if result is not None:
results[csv_path] = result
return results
def main():
"""
主函数
"""
# 检查命令行参数
if len(sys.argv) < 2:
print("使用方法: python predict.py <csv文件路径1> [csv文件路径2] ...")
return
# 加载模型
model = load_model()
if model is None:
return
# 批量预测
csv_paths = sys.argv[1:]
batch_predict(model, csv_paths)
if __name__ == "__main__":
main()

View File

@@ -1,264 +1,117 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import pandas as pd
import numpy as np
import xgboost as xgb
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns
import os
import joblib
from sklearn.metrics import accuracy_score
import m2cgen as m2c
from xgboost import XGBClassifier
import csv
def load_data(malware_csv, whitelist_csv):
"""
加载恶意软件和白名单CSV文件
"""
print(f"加载恶意软件数据: {malware_csv}")
# 预处理先获取CSV的列数
# 读取第一行以确定正确的列数
try:
header = pd.read_csv(malware_csv, nrows=1)
expected_columns = len(header.columns)
print(f"预期列数: {expected_columns}")
# 使用自定义函数读取CSV处理字段不足的行
malware_df = pd.read_csv(
malware_csv,
header=0,
low_memory=False,
on_bad_lines='skip', # 跳过无法解析的行
dtype=float, # 将所有数据列转为浮点型
converters={0: str} # 第一列为文件路径,保持为字符串类型
)
# 检查列数是否不足如果不足则填充0
actual_columns = len(malware_df.columns)
if actual_columns < expected_columns:
for i in range(actual_columns, expected_columns):
col_name = f"col_{i}"
malware_df[col_name] = 0.0
print(f"成功读取恶意软件数据,形状: {malware_df.shape}")
except Exception as e:
print(f"读取恶意软件数据时出错: {e}")
return None, None
malware_df['label'] = 1 # 恶意软件标签为1
print(f"加载白名单数据: {whitelist_csv}")
try:
# 同样处理白名单数据
whitelist_df = pd.read_csv(
whitelist_csv,
header=0,
low_memory=False,
on_bad_lines='skip',
dtype=float,
converters={0: str}
)
# 确保列数与恶意软件数据一致
whitelist_cols = len(whitelist_df.columns)
malware_cols = len(malware_df.columns) - 1 # 减去标签列
if whitelist_cols < malware_cols:
for i in range(whitelist_cols, malware_cols):
col_name = f"col_{i}"
whitelist_df[col_name] = 0.0
print(f"成功读取白名单数据,形状: {whitelist_df.shape}")
except Exception as e:
print(f"读取白名单数据时出错: {e}")
return None, None
whitelist_df['label'] = 0 # 白名单软件标签为0
# 确保两个DataFrame的列完全一致除了可能的文件路径差异
malware_features = set(malware_df.columns)
whitelist_features = set(whitelist_df.columns)
# 找出不同的列
malware_only = malware_features - whitelist_features
whitelist_only = whitelist_features - malware_features
# 为缺少的列添加0值
for col in malware_only:
if col != 'label':
whitelist_df[col] = 0.0
for col in whitelist_only:
if col != 'label':
malware_df[col] = 0.0
# 合并数据
combined_df = pd.concat([malware_df, whitelist_df], ignore_index=True, sort=False)
# 第一列通常是文件路径,需要将其移除
# 先保存文件路径以便后续参考
file_paths = combined_df.iloc[:, 0].tolist()
features = combined_df.iloc[:, 1:-1] # 除去第一列(文件路径)和最后一列(标签)
labels = combined_df['label']
print(f"数据加载完成: {len(malware_df)} 个恶意样本, {len(whitelist_df)} 个白名单样本")
print(f"特征维度: {features.shape}")
return features, labels
malware_csv = 'data/malware_features.csv'
whitelist_csv = 'data/whitelist_features.csv'
def train_xgboost_model(X_train, y_train, X_test, y_test):
"""
训练XGBoost模型
"""
print("开始训练XGBoost模型...")
# 手动读取CSV文件并自动填充缺失字段
def read_csv_with_padding(file_path):
print(f"开始读取 {file_path}...")
max_cols = 0
rows = []
# 处理数据中可能存在的NaN值
print("检查并填充缺失值...")
X_train = X_train.fillna(0)
X_test = X_test.fillna(0)
# 首先确定最大列数
with open(file_path, 'r', encoding='latin1', errors='replace') as f:
csv_reader = csv.reader(f)
for row in csv_reader:
max_cols = max(max_cols, len(row))
rows.append(row)
# 检查是否还有无限值并将其替换为0
X_train = X_train.replace([np.inf, -np.inf], 0)
X_test = X_test.replace([np.inf, -np.inf], 0)
print(f"文件 {file_path} 最大列数: {max_cols}")
print(f"处理后的训练数据形状: {X_train.shape}")
print(f"处理后的测试数据形状: {X_test.shape}")
# 为每一行填充缺失的字段
padded_rows = []
for row in rows:
# 如果行长度小于最大列数,用'0'填充
padded_row = row + ['0'] * (max_cols - len(row))
padded_rows.append(padded_row)
# 设置XGBoost参数
params = {
'max_depth': 6, # 树的最大深度
'learning_rate': 0.1, # 学习率
'n_estimators': 100, # 树的数量
'objective': 'binary:logistic', # 二分类问题
'eval_metric': 'logloss', # 评估指标
'subsample': 0.8, # 样本采样率
'colsample_bytree': 0.8, # 特征采样率
'random_state': 42 # 随机种子
}
# 创建XGBoost分类器
model = xgb.XGBClassifier(**params)
# 训练模型
model.fit(
X_train, y_train,
eval_set=[(X_train, y_train), (X_test, y_test)],
early_stopping_rounds=10,
verbose=True
)
print("模型训练完成!")
return model
# 转换为DataFrame
df = pd.DataFrame(padded_rows)
print(f"读取 {file_path} 完成,形状: {df.shape}")
return df
def evaluate_model(model, X_test, y_test):
"""
评估模型性能
"""
print("评估模型性能...")
# 在测试集上进行预测
y_pred = model.predict(X_test)
# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"准确率: {accuracy:.4f}")
# 打印分类报告
print("\n分类报告:")
print(classification_report(y_test, y_pred, target_names=['白名单', '恶意软件']))
# 打印混淆矩阵
cm = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
xticklabels=['白名单', '恶意软件'],
yticklabels=['白名单', '恶意软件'])
plt.xlabel('预测')
plt.ylabel('实际')
plt.title('混淆矩阵')
plt.savefig('confusion_matrix.png')
plt.close()
# 显示特征重要性
plt.figure(figsize=(12, 8))
xgb.plot_importance(model, max_num_features=20)
plt.title('特征重要性')
plt.savefig('feature_importance.png')
plt.close()
return accuracy
# 读取CSV文件
malware_data = read_csv_with_padding(malware_csv)
whitelist_data = read_csv_with_padding(whitelist_csv)
def save_model(model, output_path='xgboost_malware_detector.model'):
"""
保存模型到文件
"""
print(f"保存模型到 {output_path}")
joblib.dump(model, output_path)
print("模型保存完成!")
# 删除第一列(路径列)
malware_data = malware_data.iloc[:, 1:]
whitelist_data = whitelist_data.iloc[:, 1:]
def main():
"""
主函数:加载数据,训练模型,评估结果,保存模型
"""
try:
print("开始恶意软件检测模型训练...")
# 设置文件路径
malware_csv = 'data/malware_features.csv'
whitelist_csv = 'data/whitelist_features.csv'
# 检查文件是否存在
if not os.path.exists(malware_csv):
print(f"错误: 找不到恶意软件特征文件 {malware_csv}")
return
if not os.path.exists(whitelist_csv):
print(f"错误: 找不到白名单特征文件 {whitelist_csv}")
return
# 加载数据
X, y = load_data(malware_csv, whitelist_csv)
if X is None or y is None:
print("数据加载失败,终止训练")
return
print(f"数据集加载完成,共 {len(X)} 个样本")
# 数据划分
try:
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42, stratify=y)
print(f"训练集: {len(X_train)} 样本,测试集: {len(X_test)} 样本")
except Exception as e:
print(f"数据划分出错: {e}")
return
# 训练模型
try:
model = train_xgboost_model(X_train, y_train, X_test, y_test)
except Exception as e:
print(f"模型训练出错: {e}")
return
# 评估模型
try:
evaluate_model(model, X_test, y_test)
except Exception as e:
print(f"模型评估出错: {e}")
# 保存模型
try:
save_model(model)
print("模型训练和评估完成!")
except Exception as e:
print(f"模型保存出错: {e}")
except Exception as e:
print(f"训练过程中发生未预期错误: {e}")
# 将所有列转换为数值类型非数值将转为NaN
for col in malware_data.columns:
malware_data[col] = pd.to_numeric(malware_data[col], errors='coerce')
for col in whitelist_data.columns:
whitelist_data[col] = pd.to_numeric(whitelist_data[col], errors='coerce')
if __name__ == "__main__":
main()
# 用0填充NaN值
malware_data.fillna(0, inplace=True)
whitelist_data.fillna(0, inplace=True)
# 找到最大列数(最长的特征向量)
max_cols = max(malware_data.shape[1], whitelist_data.shape[1])
# 用 0 填充Padding数据使所有样本的列数相同
malware_data = malware_data.reindex(columns=range(max_cols), fill_value=0)
whitelist_data = whitelist_data.reindex(columns=range(max_cols), fill_value=0)
# 添加标签
malware_data['label'] = 1 # 恶意软件
whitelist_data['label'] = 0 # 白名单(正常)
print(malware_data.head())
print(whitelist_data.head())
# 合并数据
combined_data = pd.concat([malware_data, whitelist_data], ignore_index=True)
print(f"合并后数据形状: {combined_data.shape}")
# 分离特征和标签
X = combined_data.drop('label', axis=1)
y = combined_data['label']
# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
print(f"训练集形状: {X_train.shape}, 测试集形状: {X_test.shape}")
# 创建 XGBoost 数据集
dtrain = xgb.DMatrix(X_train, label=y_train)
dtest = xgb.DMatrix(X_test, label=y_test)
# 训练 XGBoost 模型
num_rounds = 30
# 创建watchlist来监控训练和验证集的性能
watchlist = [(dtrain, '训练集'), (dtest, '验证集')]
pos_ratio = np.mean(y_train) # 计算 1 的比例
clf = XGBClassifier(
base_score=pos_ratio, #
objective='binary:logistic', # 适用于二分类
max_depth=6, # 树的最大深度
learning_rate=0.1, # 学习率
n_estimators=100, # 迭代轮数
subsample=0.8, # 采样比例,防止过拟合
colsample_bytree=0.8,
use_label_encoder=False, # 关闭 XGBoost 的 label 编码 (适用于新版本)
eval_metric='logloss' # 交叉熵损失
)
clf.fit(X_train, y_train)
# 预测
y_pred_prob = clf.predict(X_test)
y_pred = [1 if prob > 0.5 else 0 for prob in y_pred_prob]
# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f'XGBoost 分类准确率: {accuracy:.4f}')
code = m2c.export_to_c(clf)
output_file = "malware_detector.cpp"
with open(output_file, "w") as f:
f.write(code)

Binary file not shown.