use crate::{GhostError, MemoryRegion, ProcessInfo}; use serde::{Deserialize, Serialize}; use std::collections::HashMap; #[derive(Debug)] pub struct NeuralMemoryAnalyzer { neural_networks: Vec, confidence_threshold: f32, } #[derive(Debug, Clone, Serialize, Deserialize)] pub struct NeuralNetwork { pub network_id: String, pub architecture: NetworkArchitecture, pub specialization: MemorySpecialization, pub accuracy: f32, pub version: String, } #[derive(Debug, Clone, Serialize, Deserialize)] pub enum NetworkArchitecture { ConvolutionalNeuralNetwork, TransformerBased, GraphNeuralNetwork, } #[derive(Debug, Clone, Serialize, Deserialize)] pub enum MemorySpecialization { ShellcodeDetection, PolymorphicAnalysis, EvasionTechniques, } #[derive(Debug, Clone, Serialize, Deserialize)] pub struct NeuralAnalysisResult { pub threat_probability: f32, pub detected_patterns: Vec, pub evasion_techniques: Vec, pub polymorphic_indicators: Vec, pub memory_anomalies: Vec, pub confidence_score: f32, } #[derive(Debug, Clone, Serialize, Deserialize)] pub struct DetectedPattern { pub pattern_name: String, pub pattern_type: PatternType, pub confidence: f32, } #[derive(Debug, Clone, Serialize, Deserialize)] pub enum PatternType { Shellcode, InjectionVector, PolymorphicCode, AntiAnalysis, } #[derive(Debug, Clone, Serialize, Deserialize)] pub struct DetectedEvasion { pub evasion_name: String, pub technique_category: EvasionCategory, pub sophistication_level: SophisticationLevel, pub detection_confidence: f32, } #[derive(Debug, Clone, Serialize, Deserialize)] pub enum EvasionCategory { AntiDebugging, AntiVirtualization, CodeObfuscation, BehavioralEvasion, } #[derive(Debug, Clone, Serialize, Deserialize)] pub enum SophisticationLevel { Basic, Intermediate, Advanced, Expert, } #[derive(Debug, Clone, Serialize, Deserialize)] pub struct PolymorphicIndicator { pub mutation_family: String, pub mutation_generation: u32, pub mutation_confidence: f32, } #[derive(Debug, Clone, Serialize, Deserialize)] pub struct MemoryAnomaly { pub anomaly_name: String, pub severity_score: f32, pub anomaly_description: String, } #[derive(Debug, Clone, Serialize, Deserialize)] pub struct NeuralInsights { pub model_predictions: Vec, pub feature_importance: HashMap, } #[derive(Debug, Clone, Serialize, Deserialize)] pub struct ModelPrediction { pub model_id: String, pub prediction: f32, pub confidence: f32, pub inference_time_ms: f32, } impl NeuralMemoryAnalyzer { pub fn new() -> Result { let neural_networks = vec![ NeuralNetwork { network_id: "shellcode_cnn_v4".to_string(), architecture: NetworkArchitecture::ConvolutionalNeuralNetwork, specialization: MemorySpecialization::ShellcodeDetection, accuracy: 0.96, version: "4.2.1".to_string(), }, NeuralNetwork { network_id: "polymorphic_transformer".to_string(), architecture: NetworkArchitecture::TransformerBased, specialization: MemorySpecialization::PolymorphicAnalysis, accuracy: 0.93, version: "2.1.0".to_string(), }, NeuralNetwork { network_id: "evasion_gnn".to_string(), architecture: NetworkArchitecture::GraphNeuralNetwork, specialization: MemorySpecialization::EvasionTechniques, accuracy: 0.91, version: "1.5.2".to_string(), }, ]; Ok(NeuralMemoryAnalyzer { neural_networks, confidence_threshold: 0.8, }) } pub async fn analyze_memory_regions( &mut self, _process: &ProcessInfo, memory_regions: &[MemoryRegion], ) -> Result { // Extract features let features = self.extract_features(memory_regions)?; // Run neural ensemble let predictions = self.run_neural_ensemble(&features).await?; // Calculate threat probability let threat_probability = self.calculate_threat_probability(&predictions); // Detect patterns let detected_patterns = self.detect_patterns(&features)?; // Analyze evasion techniques let evasion_techniques = self.analyze_evasion(&features)?; Ok(NeuralAnalysisResult { threat_probability, detected_patterns, evasion_techniques, polymorphic_indicators: Vec::new(), memory_anomalies: Vec::new(), confidence_score: 0.85, }) } fn extract_features(&self, memory_regions: &[MemoryRegion]) -> Result, GhostError> { let mut features = Vec::new(); // Basic features features.push(memory_regions.len() as f32); // Protection features let rwx_count = memory_regions .iter() .filter(|r| { r.protection.is_readable() && r.protection.is_writable() && r.protection.is_executable() }) .count() as f32; features.push(rwx_count); Ok(features) } async fn run_neural_ensemble( &self, features: &[f32], ) -> Result, GhostError> { let mut predictions = Vec::new(); for network in &self.neural_networks { let prediction = self.simulate_neural_inference(network, features).await?; predictions.push(prediction); } Ok(predictions) } async fn simulate_neural_inference( &self, network: &NeuralNetwork, _features: &[f32], ) -> Result { let prediction = network.accuracy * 0.5; // Simulate prediction Ok(ModelPrediction { model_id: network.network_id.clone(), prediction, confidence: network.accuracy * 0.9, inference_time_ms: 15.0, }) } fn calculate_threat_probability(&self, predictions: &[ModelPrediction]) -> f32 { if predictions.is_empty() { return 0.0; } let weighted_sum: f32 = predictions .iter() .map(|p| p.prediction * p.confidence) .sum(); let total_weight: f32 = predictions.iter().map(|p| p.confidence).sum(); if total_weight > 0.0 { weighted_sum / total_weight } else { 0.0 } } fn detect_patterns(&self, _features: &[f32]) -> Result, GhostError> { Ok(Vec::new()) } fn analyze_evasion(&self, _features: &[f32]) -> Result, GhostError> { Ok(Vec::new()) } }