2024-07-23 10:52:52 +08:00
# Async I/O Design
2024-07-22 22:17:02 +08:00
## Async functions in different languages
### JavaScript
- [Async/Await ](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function )
Prototype:
```javascript
async function name(param0) {
statements;
}
async function name(param0, param1) {
statements;
}
async function name(param0, param1, /* …, */ paramN) {
statements;
}
```
Example:
```typescript
2024-07-22 22:35:02 +08:00
async function resolveAfter1Second(): Promise<string> {
2024-07-22 22:17:02 +08:00
return new Promise((resolve) => {
setTimeout(() => {
2024-07-22 22:35:02 +08:00
resolve("Resolved after 1 second");
}, 1000);
2024-07-22 22:17:02 +08:00
});
}
2024-07-22 22:35:02 +08:00
async function asyncCall(): Promise<string> {
const result = await resolveAfter1Second();
return `AsyncCall: ${result}` ;
2024-07-22 22:17:02 +08:00
}
2024-07-23 15:58:37 +08:00
function asyncCall2(): Promise<string> {
return resolveAfter1Second();
2024-07-22 22:17:02 +08:00
}
2024-07-22 22:35:02 +08:00
function asyncCall3(): void {
resolveAfter1Second().then((result) => {
console.log(`AsyncCall3: ${result}` );
});
}
async function main() {
console.log("Starting AsyncCall");
const result1 = await asyncCall();
console.log(result1);
console.log("Starting AsyncCall2");
const result2 = await asyncCall2();
console.log(result2);
console.log("Starting AsyncCall3");
asyncCall3();
// Wait for AsyncCall3 to complete
await new Promise((resolve) => setTimeout(resolve, 1000));
console.log("Main function completed");
2024-07-22 22:17:02 +08:00
}
2024-07-22 22:35:02 +08:00
main().catch(console.error);
2024-07-22 22:17:02 +08:00
```
### Python
- [async def ](https://docs.python.org/3/library/asyncio-task.html#coroutines )
Prototype:
```python
async def name(param0):
statements
```
Example:
```python
import asyncio
2024-07-22 22:35:02 +08:00
async def resolve_after_1_second() -> str:
2024-07-22 22:17:02 +08:00
await asyncio.sleep(1)
2024-07-22 22:35:02 +08:00
return "Resolved after 1 second"
2024-07-22 22:17:02 +08:00
2024-07-22 22:35:02 +08:00
async def async_call() -> str:
result = await resolve_after_1_second()
return f"AsyncCall: {result}"
2024-07-22 22:17:02 +08:00
2024-07-23 15:58:37 +08:00
def async_call2() -> asyncio.Task:
return resolve_after_1_second()
2024-07-22 22:17:02 +08:00
2024-07-22 22:35:02 +08:00
def async_call3() -> None:
asyncio.create_task(print_after_1_second())
async def print_after_1_second() -> None:
result = await resolve_after_1_second()
print(f"AsyncCall3: {result}")
2024-07-22 22:17:02 +08:00
async def main():
print("Starting AsyncCall")
2024-07-22 22:35:02 +08:00
result1 = await async_call()
print(result1)
2024-07-22 22:17:02 +08:00
print("Starting AsyncCall2")
2024-07-22 22:35:02 +08:00
result2 = await async_call2()
print(result2)
2024-07-22 22:17:02 +08:00
print("Starting AsyncCall3")
async_call3()
# Wait for AsyncCall3 to complete
await asyncio.sleep(1)
print("Main function completed")
2024-07-22 22:35:02 +08:00
# Run the main coroutine
asyncio.run(main())
2024-07-22 22:17:02 +08:00
```
### Rust
- [async fn ](https://doc.rust-lang.org/std/keyword.async.html )
Prototype:
```rust
async fn name(param0: Type) -> ReturnType {
statements
}
```
Example:
```rust
2024-07-23 15:58:37 +08:00
use std::time::Duration;
use tokio::time::sleep;
use std::future::Future;
2024-07-22 22:17:02 +08:00
2024-07-22 22:35:02 +08:00
async fn resolve_after_1_second() -> String {
2024-07-22 22:17:02 +08:00
sleep(Duration::from_secs(1)).await;
2024-07-22 22:35:02 +08:00
"Resolved after 1 second".to_string()
2024-07-22 22:17:02 +08:00
}
2024-07-22 22:35:02 +08:00
async fn async_call() -> String {
let result = resolve_after_1_second().await;
format!("AsyncCall: {}", result)
2024-07-22 22:17:02 +08:00
}
2024-07-23 15:58:37 +08:00
fn async_call2() -> impl Future<Output = String> {
resolve_after_1_second()
2024-07-22 22:17:02 +08:00
}
fn async_call3() {
tokio::spawn(async {
2024-07-22 22:35:02 +08:00
let result = resolve_after_1_second().await;
println!("AsyncCall3: {}", result);
2024-07-22 22:17:02 +08:00
});
}
#[tokio::main]
async fn main() {
2024-07-22 22:35:02 +08:00
println!("Starting AsyncCall");
let result1 = async_call().await;
println!("{}", result1);
2024-07-22 22:17:02 +08:00
2024-07-22 22:35:02 +08:00
println!("Starting AsyncCall2");
let result2 = async_call2().await;
println!("{}", result2);
2024-07-22 22:17:02 +08:00
2024-07-22 22:35:02 +08:00
println!("Starting AsyncCall3");
2024-07-22 22:17:02 +08:00
async_call3();
2024-07-22 22:35:02 +08:00
// Wait for AsyncCall3 to complete
2024-07-23 15:58:37 +08:00
sleep(Duration::from_secs(2)).await;
2024-07-22 22:35:02 +08:00
println!("Main function completed");
2024-07-22 22:17:02 +08:00
}
```
### C#
- [async ](https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/ )
Prototype:
```csharp
async Task<ReturnType> NameAsync(Type param0)
{
statements;
}
```
Example:
```csharp
using System;
using System.Threading.Tasks;
2024-07-22 22:35:02 +08:00
class Program
2024-07-22 22:17:02 +08:00
{
2024-07-22 22:35:02 +08:00
static async Task<string> ResolveAfter1Second()
2024-07-22 22:17:02 +08:00
{
await Task.Delay(1000);
2024-07-22 22:35:02 +08:00
return "Resolved after 1 second";
2024-07-22 22:17:02 +08:00
}
2024-07-22 22:35:02 +08:00
static async Task<string> AsyncCall()
2024-07-22 22:17:02 +08:00
{
2024-07-22 22:35:02 +08:00
string result = await ResolveAfter1Second();
return $"AsyncCall: {result}";
2024-07-22 22:17:02 +08:00
}
2024-07-23 15:58:37 +08:00
static Task<string> AsyncCall2()
2024-07-22 22:17:02 +08:00
{
2024-07-23 15:58:37 +08:00
return ResolveAfter1Second();
2024-07-22 22:17:02 +08:00
}
static void AsyncCall3()
{
2024-07-22 22:35:02 +08:00
_ = Task.Run(async () =>
{
string result = await ResolveAfter1Second();
Console.WriteLine($"AsyncCall3: {result}");
});
2024-07-22 22:17:02 +08:00
}
2024-07-22 22:35:02 +08:00
static async Task Main()
2024-07-22 22:17:02 +08:00
{
Console.WriteLine("Starting AsyncCall");
2024-07-22 22:35:02 +08:00
string result1 = await AsyncCall();
Console.WriteLine(result1);
2024-07-22 22:17:02 +08:00
Console.WriteLine("Starting AsyncCall2");
2024-07-22 22:35:02 +08:00
string result2 = await AsyncCall2();
Console.WriteLine(result2);
2024-07-22 22:17:02 +08:00
Console.WriteLine("Starting AsyncCall3");
AsyncCall3();
// Wait for AsyncCall3 to complete
await Task.Delay(1000);
Console.WriteLine("Main method completed");
}
}
```
### C++ 20 Coroutines
- [co_await ](https://en.cppreference.com/w/cpp/language/coroutines )
Prototype:
```cpp
TaskReturnType NameAsync(Type param0)
{
co_return co_await expression;
}
```
Example:
```cpp
2024-07-22 22:35:02 +08:00
#include <cppcoro/task.hpp>
#include <cppcoro/sync_wait.hpp>
#include <cppcoro/when_all.hpp>
2024-07-22 22:17:02 +08:00
#include <chrono>
2024-07-22 22:35:02 +08:00
#include <iostream>
2024-07-22 22:17:02 +08:00
#include <thread>
2024-07-22 22:35:02 +08:00
cppcoro::task<std::string> resolveAfter1Second() {
co_await std::chrono::seconds(1);
co_return "Resolved after 1 second";
2024-07-22 22:17:02 +08:00
}
2024-07-22 22:35:02 +08:00
cppcoro::task<std::string> asyncCall() {
auto result = co_await resolveAfter1Second();
co_return "AsyncCall: " + result;
2024-07-22 22:17:02 +08:00
}
2024-07-22 22:35:02 +08:00
cppcoro::task<std::string> asyncCall2() {
2024-07-23 15:58:37 +08:00
return resolveAfter1Second();
2024-07-22 22:17:02 +08:00
}
2024-07-22 22:35:02 +08:00
cppcoro::task<void> asyncCall3() {
auto result = co_await resolveAfter1Second();
std::cout << "AsyncCall3: " << result << std::endl;
2024-07-22 22:17:02 +08:00
}
2024-07-22 22:35:02 +08:00
cppcoro::task<void> main() {
2024-07-22 22:17:02 +08:00
std::cout << "Starting AsyncCall" << std::endl;
2024-07-22 22:35:02 +08:00
auto result1 = co_await asyncCall();
std::cout << result1 << std::endl;
2024-07-22 22:17:02 +08:00
std::cout << "Starting AsyncCall2" << std::endl;
2024-07-22 22:35:02 +08:00
auto result2 = co_await asyncCall2();
std::cout << result2 << std::endl;
2024-07-22 22:17:02 +08:00
std::cout << "Starting AsyncCall3" << std::endl;
2024-07-22 22:35:02 +08:00
auto asyncCall3Task = asyncCall3();
2024-07-22 22:17:02 +08:00
// Wait for AsyncCall3 to complete
2024-07-22 22:35:02 +08:00
co_await asyncCall3Task;
2024-07-22 22:17:02 +08:00
std::cout << "Main function completed" << std::endl;
}
int main() {
2024-07-22 22:35:02 +08:00
try {
cppcoro::sync_wait(::main());
} catch (const std::exception& e) {
std::cerr << "Error: " << e.what() << std::endl;
return 1;
}
2024-07-22 22:17:02 +08:00
return 0;
}
```
2024-07-23 15:58:37 +08:00
## Common concepts
### Promise, Future, Task, and Coroutine
- **Promise**: An object that represents the eventual completion (or failure) of an asynchronous operation and its resulting value. It is used to produce a value that will be consumed by a `Future` .
- **Future**: An object that represents the result of an asynchronous operation. It is used to obtain the value produced by a `Promise` .
- **Task**: A unit of work that can be scheduled and executed asynchronously. It is a higher-level abstraction that combines a `Promise` and a `Future` .
- **Coroutine**: A special type of function that can suspend its execution and return control to the caller without losing its state. It can be resumed later, allowing for asynchronous programming.
### `async`, `await` and similar keywords
- **`async` **: A keyword used to define a function that returns a `Promise` or `Task` . It allows the function to pause its execution and resume later.
- **`await` **: A keyword used to pause the execution of an `async` function until a `Promise` or `Task` is resolved. It unwraps the value of the `Promise` or `Task` and allows the function to continue.
- **`co_return` **: A keyword used in C++ coroutines to return a value from a coroutine. It is similar to `return` but is used in coroutines to indicate that the coroutine has completed. It's similar to `return` in `async` functions in other languages that boxes the value into a `Promise` or `Task` .
`async/await` and similar constructs provide a more readable and synchronous-like way of writing asynchronous code, it hides the type of `Promise` /`Future` /`Task` from the user and allows them to focus on the logic of the code.
### Executing Multiple Async Operations Concurrently
To run multiple promises concurrently, JavaScript provides `Promise.all` , `Promise.allSettled` and `Promise.any` , Python provides `asyncio.gather` , Rust provides `tokio::try_join` , C# provides `Task.WhenAll` , and C++ provides `cppcoro::when_all` .
In some situations, you may want to get the first result of multiple async operations. JavaScript provides `Promise.race` to get the first result of multiple promises. Python provides `asyncio.wait` to get the first result of multiple coroutines. Rust provides `tokio::select!` to get the first result of multiple futures. C# provides `Task.WhenAny` to get the first result of multiple tasks. C++ provides `cppcoro::when_any` to get the first result of multiple tasks. Those functions are very simular to `select` in Go.
### Error Handling
`await` commonly unwraps the value of a `Promise` or `Task` , but it also propagates errors. If the `Promise` or `Task` is rejected or throws an error, the error will be thrown in the `async` function by the `await` keyword. You can use `try/catch` blocks to handle errors in `async` functions.
## Common patterns
- `async` keyword hides the types of `Promise` /`Future` /`Task` in the function signature in Python and Rust, but not in JavaScript, C#, and C++.
- `await` keyword unwraps the value of a `Promise` /`Future` /`Task` .
- `return` keyword boxes the value into a `Promise` /`Future` /`Task` if it's not already.
## Design considerations in LLGo
2024-07-23 17:25:42 +08:00
- Don't introduce `async` /`await` keywords to compatible with Go compiler (just compiling)
2024-07-23 15:58:37 +08:00
- For performance reason don't implement async functions with goroutines
2024-07-23 17:25:42 +08:00
- Avoid implementing `Promise` by using `chan` to avoid blocking the thread, but it can be wrapped as a `chan` to make it compatible `select` statement
2024-07-23 15:58:37 +08:00
## Design
2024-07-23 17:25:42 +08:00
Introduce `Promise` type to represent an asynchronous operation and its resulting value. `Promise` can be resolved with a value with an error. `Promise` can be awaited to get the value and error.
2024-07-23 17:02:40 +08:00
2024-07-23 17:25:42 +08:00
`Promise` just a type indicating the asynchronous operation, it can't be created and assigned directly. It be replaced to `PromiseImpl` by the LLGo compiler.
2024-07-23 17:02:40 +08:00
2024-07-23 15:58:37 +08:00
```go
2024-07-23 17:02:40 +08:00
// Some native async functions
func timeoutAsync(d time.Duration, cb func()) {
go func() {
time.Sleep(d)
cb()
}()
}
// Wrap callback-based async function into Promise
func resolveAfter1Second() (resolve Promise[string]) {
timeoutAsync(1 * time.Second, func() {
resolve("Resolved after 1 second", nil)
2024-07-23 15:58:37 +08:00
})
}
2024-07-23 17:02:40 +08:00
// Compiled to:
func resolveAfter1Second() (resolve PromiseImpl[string]) {
promise := io.NewPromiseImpl[string ](resolve func(value string, err error ) {
resolve: func(value string, err error) {
for true {
switch (promise.prev = promise.next) {
case 0:
timeoutAsync(1 * time.Second, func() {
resolve("Resolved after 1 second", nil)
})
}
}
},
}
return promise
2024-07-23 15:58:37 +08:00
}
2024-07-23 17:02:40 +08:00
func asyncCall() (resolve Promise[string]) {
str, err := resolveAfter1Second().Await()
resolve("AsyncCall: " + str, err)
}
// Compiled to:
func asyncCall() (resolve PromiseImpl[string]) {
promise := io.NewPromiseImpl[string ](resolve func(value string, err error ) {
for true {
switch (promise.prev = promise.next) {
case 0:
resolveAfter1Second()
return
case 1:
str, err := promise.value, promise.err
resolve("AsyncCall: " + str, err)
return
}
}
})
return promise
}
// Directly return Promise
2024-07-23 15:58:37 +08:00
func asyncCall2() Promise[string] {
return resolveAfter1Second()
}
2024-07-23 17:02:40 +08:00
// Compiled to:
func asyncCall2() PromiseImpl[string] {
return resolveAfter1Second()
}
// Don't wait for Promise to complete
2024-07-23 15:58:37 +08:00
func asyncCall3() {
resolveAfter1Second().Then(func(result string) {
fmt.Println("AsyncCall3: " + result)
})
}
func asyncMain() {
fmt.Println("Starting AsyncCall")
result1 := asyncCall().Await()
fmt.Println(result1)
fmt.Println("Starting AsyncCall2")
result2 := asyncCall2().Await()
fmt.Println(result2)
fmt.Println("Starting AsyncCall3")
asyncCall3()
// Wait for AsyncCall3 to complete
time.Sleep(2 * time.Second)
fmt.Println("Main function completed")
}
```