Files
llgo/internal/lib/reflect/value.go

682 lines
20 KiB
Go
Raw Normal View History

2024-06-20 14:17:37 +08:00
/*
* Copyright (c) 2024 The GoPlus Authors (goplus.org). All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package reflect
import (
"unsafe"
"github.com/goplus/llgo/internal/abi"
2024-06-20 23:40:35 +08:00
"github.com/goplus/llgo/internal/runtime"
2024-06-20 14:17:37 +08:00
)
// Value is the reflection interface to a Go value.
//
// Not all methods apply to all kinds of values. Restrictions,
// if any, are noted in the documentation for each method.
// Use the Kind method to find out the kind of value before
// calling kind-specific methods. Calling a method
// inappropriate to the kind of type causes a run time panic.
//
// The zero Value represents no value.
// Its IsValid method returns false, its Kind method returns Invalid,
// its String method returns "<invalid Value>", and all other methods panic.
// Most functions and methods never return an invalid value.
// If one does, its documentation states the conditions explicitly.
//
// A Value can be used concurrently by multiple goroutines provided that
// the underlying Go value can be used concurrently for the equivalent
// direct operations.
//
// To compare two Values, compare the results of the Interface method.
// Using == on two Values does not compare the underlying values
// they represent.
type Value struct {
// typ_ holds the type of the value represented by a Value.
// Access using the typ method to avoid escape of v.
typ_ *abi.Type
// Pointer-valued data or, if flagIndir is set, pointer to data.
// Valid when either flagIndir is set or typ.pointers() is true.
ptr unsafe.Pointer
// flag holds metadata about the value.
//
// The lowest five bits give the Kind of the value, mirroring typ.Kind().
//
// The next set of bits are flag bits:
// - flagStickyRO: obtained via unexported not embedded field, so read-only
// - flagEmbedRO: obtained via unexported embedded field, so read-only
// - flagIndir: val holds a pointer to the data
// - flagAddr: v.CanAddr is true (implies flagIndir and ptr is non-nil)
// - flagMethod: v is a method value.
// If ifaceIndir(typ), code can assume that flagIndir is set.
//
// The remaining 22+ bits give a method number for method values.
// If flag.kind() != Func, code can assume that flagMethod is unset.
flag
// A method value represents a curried method invocation
// like r.Read for some receiver r. The typ+val+flag bits describe
// the receiver r, but the flag's Kind bits say Func (methods are
// functions), and the top bits of the flag give the method number
// in r's type's method table.
}
type flag uintptr
const (
flagKindWidth = 5 // there are 27 kinds
flagKindMask flag = 1<<flagKindWidth - 1
flagStickyRO flag = 1 << 5
flagEmbedRO flag = 1 << 6
flagIndir flag = 1 << 7
flagAddr flag = 1 << 8
flagMethod flag = 1 << 9
flagMethodShift = 10
flagRO flag = flagStickyRO | flagEmbedRO
)
func (f flag) kind() Kind {
return Kind(f & flagKindMask)
}
func (f flag) ro() flag {
if f&flagRO != 0 {
return flagStickyRO
}
return 0
}
2024-06-21 00:31:36 +08:00
func (v Value) typ() *abi.Type {
// Types are either static (for compiler-created types) or
// heap-allocated but always reachable (for reflection-created
// types, held in the central map). So there is no need to
// escape types. noescape here help avoid unnecessary escape
// of v.
return (*abi.Type)(unsafe.Pointer(v.typ_))
}
// pointer returns the underlying pointer represented by v.
// v.Kind() must be Pointer, Map, Chan, Func, or UnsafePointer
// if v.Kind() == Pointer, the base type must not be not-in-heap.
func (v Value) pointer() unsafe.Pointer {
/*
if v.typ().Size() != goarch.PtrSize || !v.typ().Pointers() {
panic("can't call pointer on a non-pointer Value")
}
if v.flag&flagIndir != 0 {
return *(*unsafe.Pointer)(v.ptr)
}
return v.ptr
*/
panic("todo")
}
// packEface converts v to the empty interface.
func packEface(v Value) any {
t := v.typ()
var i any
e := (*emptyInterface)(unsafe.Pointer(&i))
// First, fill in the data portion of the interface.
switch {
case t.IfaceIndir():
if v.flag&flagIndir == 0 {
panic("bad indir")
}
// Value is indirect, and so is the interface we're making.
ptr := v.ptr
if v.flag&flagAddr != 0 {
// TODO: pass safe boolean from valueInterface so
// we don't need to copy if safe==true?
c := unsafe_New(t)
typedmemmove(t, c, ptr)
ptr = c
}
e.word = ptr
case v.flag&flagIndir != 0:
// Value is indirect, but interface is direct. We need
// to load the data at v.ptr into the interface data word.
e.word = *(*unsafe.Pointer)(v.ptr)
default:
// Value is direct, and so is the interface.
e.word = v.ptr
}
// Now, fill in the type portion. We're very careful here not
// to have any operation between the e.word and e.typ assignments
// that would let the garbage collector observe the partially-built
// interface value.
e.typ = t
return i
}
// unpackEface converts the empty interface i to a Value.
func unpackEface(i any) Value {
e := (*emptyInterface)(unsafe.Pointer(&i))
// NOTE: don't read e.word until we know whether it is really a pointer or not.
t := e.typ
if t == nil {
return Value{}
}
f := flag(t.Kind())
if t.IfaceIndir() {
f |= flagIndir
}
return Value{t, e.word, f}
}
2024-06-20 23:40:35 +08:00
// A ValueError occurs when a Value method is invoked on
// a Value that does not support it. Such cases are documented
// in the description of each method.
type ValueError struct {
Method string
Kind Kind
}
func (e *ValueError) Error() string {
if e.Kind == 0 {
return "reflect: call of " + e.Method + " on zero Value"
}
return "reflect: call of " + e.Method + " on " + e.Kind.String() + " Value"
}
2024-06-20 14:17:37 +08:00
// emptyInterface is the header for an interface{} value.
type emptyInterface struct {
typ *abi.Type
word unsafe.Pointer
}
// nonEmptyInterface is the header for an interface value with methods.
type nonEmptyInterface struct {
// see ../runtime/iface.go:/Itab
itab *struct {
ityp *abi.Type // static interface type
typ *abi.Type // dynamic concrete type
hash uint32 // copy of typ.hash
_ [4]byte
fun [100000]unsafe.Pointer // method table
}
word unsafe.Pointer
}
2024-06-20 23:40:35 +08:00
// CanFloat reports whether Float can be used without panicking.
func (v Value) CanFloat() bool {
switch v.kind() {
case Float32, Float64:
return true
default:
return false
}
}
// Float returns v's underlying value, as a float64.
// It panics if v's Kind is not Float32 or Float64
func (v Value) Float() float64 {
k := v.kind()
switch k {
case Float32:
return float64(*(*float32)(v.ptr))
case Float64:
return *(*float64)(v.ptr)
}
panic(&ValueError{"reflect.Value.Float", v.kind()})
}
// TODO(xsw):
// var uint8Type = rtypeOf(uint8(0))
// Index returns v's i'th element.
// It panics if v's Kind is not Array, Slice, or String or i is out of range.
func (v Value) Index(i int) Value {
/*
switch v.kind() {
case Array:
tt := (*arrayType)(unsafe.Pointer(v.typ()))
if uint(i) >= uint(tt.Len) {
panic("reflect: array index out of range")
}
typ := tt.Elem
offset := uintptr(i) * typ.Size()
// Either flagIndir is set and v.ptr points at array,
// or flagIndir is not set and v.ptr is the actual array data.
// In the former case, we want v.ptr + offset.
// In the latter case, we must be doing Index(0), so offset = 0,
// so v.ptr + offset is still the correct address.
val := add(v.ptr, offset, "same as &v[i], i < tt.len")
fl := v.flag&(flagIndir|flagAddr) | v.flag.ro() | flag(typ.Kind()) // bits same as overall array
return Value{typ, val, fl}
case Slice:
// Element flag same as Elem of Pointer.
// Addressable, indirect, possibly read-only.
s := (*unsafeheader.Slice)(v.ptr)
if uint(i) >= uint(s.Len) {
panic("reflect: slice index out of range")
}
tt := (*sliceType)(unsafe.Pointer(v.typ()))
typ := tt.Elem
val := arrayAt(s.Data, i, typ.Size(), "i < s.Len")
fl := flagAddr | flagIndir | v.flag.ro() | flag(typ.Kind())
return Value{typ, val, fl}
case String:
s := (*unsafeheader.String)(v.ptr)
if uint(i) >= uint(s.Len) {
panic("reflect: string index out of range")
}
p := arrayAt(s.Data, i, 1, "i < s.Len")
fl := v.flag.ro() | flag(Uint8) | flagIndir
return Value{uint8Type, p, fl}
}
panic(&ValueError{"reflect.Value.Index", v.kind()})
*/
panic("todo")
}
// CanInt reports whether Int can be used without panicking.
func (v Value) CanInt() bool {
switch v.kind() {
case Int, Int8, Int16, Int32, Int64:
return true
default:
return false
}
}
// Int returns v's underlying value, as an int64.
// It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64.
func (v Value) Int() int64 {
k := v.kind()
p := v.ptr
switch k {
case Int:
2024-06-21 00:31:36 +08:00
return int64(uintptr(p))
2024-06-20 23:40:35 +08:00
case Int8:
2024-06-21 00:31:36 +08:00
return int64(uintptr(p))
2024-06-20 23:40:35 +08:00
case Int16:
2024-06-21 00:31:36 +08:00
return int64(uintptr(p))
2024-06-20 23:40:35 +08:00
case Int32:
2024-06-21 00:31:36 +08:00
return int64(uintptr(p))
2024-06-20 23:40:35 +08:00
case Int64:
2024-06-21 00:31:36 +08:00
if unsafe.Sizeof(uintptr(0)) == 8 {
return int64(uintptr(p))
}
2024-06-20 23:40:35 +08:00
return *(*int64)(p)
}
panic(&ValueError{"reflect.Value.Int", v.kind()})
}
// CanInterface reports whether Interface can be used without panicking.
func (v Value) CanInterface() bool {
if v.flag == 0 {
panic(&ValueError{"reflect.Value.CanInterface", Invalid})
}
return v.flag&flagRO == 0
}
// Interface returns v's current value as an interface{}.
// It is equivalent to:
//
// var i interface{} = (v's underlying value)
//
// It panics if the Value was obtained by accessing
// unexported struct fields.
func (v Value) Interface() (i any) {
return valueInterface(v, true)
}
func valueInterface(v Value, safe bool) any {
/*
if v.flag == 0 {
panic(&ValueError{"reflect.Value.Interface", Invalid})
}
if safe && v.flag&flagRO != 0 {
// Do not allow access to unexported values via Interface,
// because they might be pointers that should not be
// writable or methods or function that should not be callable.
panic("reflect.Value.Interface: cannot return value obtained from unexported field or method")
}
if v.flag&flagMethod != 0 {
v = makeMethodValue("Interface", v)
}
if v.kind() == Interface {
// Special case: return the element inside the interface.
// Empty interface has one layout, all interfaces with
// methods have a second layout.
if v.NumMethod() == 0 {
return *(*any)(v.ptr)
}
return *(*interface {
M()
})(v.ptr)
}
// TODO: pass safe to packEface so we don't need to copy if safe==true?
return packEface(v)
*/
panic("todo")
}
// InterfaceData returns a pair of unspecified uintptr values.
// It panics if v's Kind is not Interface.
//
// In earlier versions of Go, this function returned the interface's
// value as a uintptr pair. As of Go 1.4, the implementation of
// interface values precludes any defined use of InterfaceData.
//
// Deprecated: The memory representation of interface values is not
// compatible with InterfaceData.
func (v Value) InterfaceData() [2]uintptr {
/*
v.mustBe(Interface)
// The compiler loses track as it converts to uintptr. Force escape.
escapes(v.ptr)
// We treat this as a read operation, so we allow
// it even for unexported data, because the caller
// has to import "unsafe" to turn it into something
// that can be abused.
// Interface value is always bigger than a word; assume flagIndir.
return *(*[2]uintptr)(v.ptr)
*/
panic("todo")
}
// IsNil reports whether its argument v is nil. The argument must be
// a chan, func, interface, map, pointer, or slice value; if it is
// not, IsNil panics. Note that IsNil is not always equivalent to a
// regular comparison with nil in Go. For example, if v was created
// by calling ValueOf with an uninitialized interface variable i,
// i==nil will be true but v.IsNil will panic as v will be the zero
// Value.
func (v Value) IsNil() bool {
k := v.kind()
switch k {
case Chan, Func, Map, Pointer, UnsafePointer:
if v.flag&flagMethod != 0 {
return false
}
ptr := v.ptr
if v.flag&flagIndir != 0 {
ptr = *(*unsafe.Pointer)(ptr)
}
return ptr == nil
case Interface, Slice:
// Both interface and slice are nil if first word is 0.
// Both are always bigger than a word; assume flagIndir.
return *(*unsafe.Pointer)(v.ptr) == nil
}
panic(&ValueError{"reflect.Value.IsNil", v.kind()})
}
// IsValid reports whether v represents a value.
// It returns false if v is the zero Value.
// If IsValid returns false, all other methods except String panic.
// Most functions and methods never return an invalid Value.
// If one does, its documentation states the conditions explicitly.
func (v Value) IsValid() bool {
return v.flag != 0
}
// IsZero reports whether v is the zero value for its type.
// It panics if the argument is invalid.
func (v Value) IsZero() bool {
/*
switch v.kind() {
case Bool:
return !v.Bool()
case Int, Int8, Int16, Int32, Int64:
return v.Int() == 0
case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
return v.Uint() == 0
case Float32, Float64:
return math.Float64bits(v.Float()) == 0
case Complex64, Complex128:
c := v.Complex()
return math.Float64bits(real(c)) == 0 && math.Float64bits(imag(c)) == 0
case Array:
// If the type is comparable, then compare directly with zero.
if v.typ().Equal != nil && v.typ().Size() <= maxZero {
if v.flag&flagIndir == 0 {
return v.ptr == nil
}
// v.ptr doesn't escape, as Equal functions are compiler generated
// and never escape. The escape analysis doesn't know, as it is a
// function pointer call.
return v.typ().Equal(noescape(v.ptr), unsafe.Pointer(&zeroVal[0]))
}
n := v.Len()
for i := 0; i < n; i++ {
if !v.Index(i).IsZero() {
return false
}
}
return true
case Chan, Func, Interface, Map, Pointer, Slice, UnsafePointer:
return v.IsNil()
case String:
return v.Len() == 0
case Struct:
// If the type is comparable, then compare directly with zero.
if v.typ().Equal != nil && v.typ().Size() <= maxZero {
if v.flag&flagIndir == 0 {
return v.ptr == nil
}
// See noescape justification above.
return v.typ().Equal(noescape(v.ptr), unsafe.Pointer(&zeroVal[0]))
}
n := v.NumField()
for i := 0; i < n; i++ {
if !v.Field(i).IsZero() {
return false
}
}
return true
default:
// This should never happen, but will act as a safeguard for later,
// as a default value doesn't makes sense here.
panic(&ValueError{"reflect.Value.IsZero", v.Kind()})
}
*/
panic("todo")
}
// SetZero sets v to be the zero value of v's type.
// It panics if CanSet returns false.
func (v Value) SetZero() {
/*
v.mustBeAssignable()
switch v.kind() {
case Bool:
*(*bool)(v.ptr) = false
case Int:
*(*int)(v.ptr) = 0
case Int8:
*(*int8)(v.ptr) = 0
case Int16:
*(*int16)(v.ptr) = 0
case Int32:
*(*int32)(v.ptr) = 0
case Int64:
*(*int64)(v.ptr) = 0
case Uint:
*(*uint)(v.ptr) = 0
case Uint8:
*(*uint8)(v.ptr) = 0
case Uint16:
*(*uint16)(v.ptr) = 0
case Uint32:
*(*uint32)(v.ptr) = 0
case Uint64:
*(*uint64)(v.ptr) = 0
case Uintptr:
*(*uintptr)(v.ptr) = 0
case Float32:
*(*float32)(v.ptr) = 0
case Float64:
*(*float64)(v.ptr) = 0
case Complex64:
*(*complex64)(v.ptr) = 0
case Complex128:
*(*complex128)(v.ptr) = 0
case String:
*(*string)(v.ptr) = ""
case Slice:
*(*unsafeheader.Slice)(v.ptr) = unsafeheader.Slice{}
case Interface:
*(*[2]unsafe.Pointer)(v.ptr) = [2]unsafe.Pointer{}
case Chan, Func, Map, Pointer, UnsafePointer:
*(*unsafe.Pointer)(v.ptr) = nil
case Array, Struct:
typedmemclr(v.typ(), v.ptr)
default:
// This should never happen, but will act as a safeguard for later,
// as a default value doesn't makes sense here.
panic(&ValueError{"reflect.Value.SetZero", v.Kind()})
}
*/
panic("todo")
}
// Kind returns v's Kind.
// If v is the zero Value (IsValid returns false), Kind returns Invalid.
func (v Value) Kind() Kind {
return v.kind()
}
// Len returns v's length.
// It panics if v's Kind is not Array, Chan, Map, Slice, String, or pointer to Array.
func (v Value) Len() int {
// lenNonSlice is split out to keep Len inlineable for slice kinds.
if v.kind() == Slice {
return (*unsafeheaderSlice)(v.ptr).Len
}
return v.lenNonSlice()
}
func (v Value) lenNonSlice() int {
/*
switch k := v.kind(); k {
case Array:
tt := (*arrayType)(unsafe.Pointer(v.typ()))
return int(tt.Len)
case Chan:
return chanlen(v.pointer())
case Map:
return maplen(v.pointer())
case String:
// String is bigger than a word; assume flagIndir.
return (*unsafeheader.String)(v.ptr).Len
case Ptr:
if v.typ().Elem().Kind() == abi.Array {
return v.typ().Elem().Len()
}
panic("reflect: call of reflect.Value.Len on ptr to non-array Value")
}
panic(&ValueError{"reflect.Value.Len", v.kind()})
*/
panic("todo")
}
//go:linkname unsafe_New github.com/goplus/llgo/internal/runtime.New
func unsafe_New(*abi.Type) unsafe.Pointer
//go:linkname unsafe_NewArray github.com/goplus/llgo/internal/runtime.NewArray
func unsafe_NewArray(*abi.Type, int) unsafe.Pointer
2024-06-21 00:31:36 +08:00
// ValueOf returns a new Value initialized to the concrete value
// stored in the interface i. ValueOf(nil) returns the zero Value.
func ValueOf(i any) Value {
if i == nil {
return Value{}
}
return unpackEface(i)
}
2024-06-20 23:40:35 +08:00
// Zero returns a Value representing the zero value for the specified type.
// The result is different from the zero value of the Value struct,
// which represents no value at all.
// For example, Zero(TypeOf(42)) returns a Value with Kind Int and value 0.
// The returned value is neither addressable nor settable.
func Zero(typ Type) Value {
if typ == nil {
panic("reflect: Zero(nil)")
}
t := &typ.(*rtype).t
fl := flag(t.Kind())
if t.IfaceIndir() {
var p unsafe.Pointer
if t.Size() <= maxZero {
p = unsafe.Pointer(&runtime.ZeroVal[0])
} else {
p = unsafe_New(t)
}
return Value{t, p, fl | flagIndir}
}
return Value{t, nil, fl}
}
// TODO(xsw): check this
// must match declarations in runtime/map.go.
const maxZero = runtime.MaxZero
2024-06-21 00:31:36 +08:00
// memmove copies size bytes to dst from src. No write barriers are used.
//
//go:linkname memmove C.memmove
func memmove(dst, src unsafe.Pointer, size uintptr)
// typedmemmove copies a value of type t to dst from src.
//
//go:linkname typedmemmove github.com/goplus/llgo/internal/runtime.Typedmemmove
func typedmemmove(t *abi.Type, dst, src unsafe.Pointer)
/* TODO(xsw):
// typedmemclr zeros the value at ptr of type t.
//
//go:noescape
func typedmemclr(t *abi.Type, ptr unsafe.Pointer)
// typedmemclrpartial is like typedmemclr but assumes that
// dst points off bytes into the value and only clears size bytes.
//
//go:noescape
func typedmemclrpartial(t *abi.Type, ptr unsafe.Pointer, off, size uintptr)
// typedslicecopy copies a slice of elemType values from src to dst,
// returning the number of elements copied.
//
//go:noescape
func typedslicecopy(t *abi.Type, dst, src unsafeheaderSlice) int
// typedarrayclear zeroes the value at ptr of an array of elemType,
// only clears len elem.
//
//go:noescape
func typedarrayclear(elemType *abi.Type, ptr unsafe.Pointer, len int)
//go:noescape
func typehash(t *abi.Type, p unsafe.Pointer, h uintptr) uintptr
func verifyNotInHeapPtr(p uintptr) bool
//go:noescape
func growslice(t *abi.Type, old unsafeheaderSlice, num int) unsafeheaderSlice
*/