Files
llgo/ssa/expr.go

632 lines
18 KiB
Go
Raw Normal View History

2024-04-18 01:18:41 +08:00
/*
* Copyright (c) 2024 The GoPlus Authors (goplus.org). All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package ssa
2024-04-18 15:03:10 +08:00
import (
2024-04-21 15:12:57 +08:00
"bytes"
"fmt"
2024-04-20 22:05:45 +08:00
"go/constant"
2024-04-18 22:18:43 +08:00
"go/token"
2024-04-19 00:05:57 +08:00
"go/types"
2024-04-21 15:12:57 +08:00
"log"
2024-04-18 22:18:43 +08:00
2024-04-18 15:03:10 +08:00
"github.com/goplus/llvm"
)
2024-04-18 22:18:43 +08:00
// -----------------------------------------------------------------------------
type Expr struct {
impl llvm.Value
Type
}
2024-04-26 00:31:02 +08:00
/*
// TypeOf returns the type of the expression.
func (v Expr) TypeOf() types.Type {
return v.t
}
*/
2024-04-27 20:45:55 +08:00
// Do evaluates the delay expression and returns the result.
2024-04-27 21:32:48 +08:00
func (v Expr) Do() Expr {
2024-04-27 20:45:55 +08:00
if vt := v.Type; vt.kind == vkDelayExpr {
2024-04-27 21:32:48 +08:00
return vt.t.(delayExprTy)()
2024-04-27 20:45:55 +08:00
}
return v
}
// DelayExpr returns a delay expression.
2024-04-27 21:32:48 +08:00
func DelayExpr(f func() Expr) Expr {
return Expr{Type: &aType{t: delayExprTy(f), kind: vkDelayExpr}}
2024-04-27 20:45:55 +08:00
}
2024-04-27 21:32:48 +08:00
type delayExprTy func() Expr
2024-04-27 20:45:55 +08:00
2024-04-27 21:32:48 +08:00
func (p delayExprTy) Underlying() types.Type {
2024-04-27 20:45:55 +08:00
panic("don't call")
}
2024-04-27 21:32:48 +08:00
func (p delayExprTy) String() string {
2024-04-27 20:45:55 +08:00
return "delayExpr"
}
2024-04-19 00:05:57 +08:00
// -----------------------------------------------------------------------------
func llvmValues(vals []Expr) []llvm.Value {
ret := make([]llvm.Value, len(vals))
for i, v := range vals {
ret[i] = v.impl
}
return ret
}
// -----------------------------------------------------------------------------
2024-04-21 00:22:39 +08:00
func (p Program) Null(t Type) Expr {
return Expr{llvm.ConstNull(t.ll), t}
}
2024-04-20 22:05:45 +08:00
func (p Program) BoolVal(v bool) Expr {
t := p.Bool()
var bv uint64
if v {
bv = 1
}
ret := llvm.ConstInt(t.ll, bv, v)
return Expr{ret, t}
}
2024-04-21 15:12:57 +08:00
func (p Program) IntVal(v uint64, t Type) Expr {
ret := llvm.ConstInt(t.ll, v, false)
2024-04-20 22:30:38 +08:00
return Expr{ret, t}
}
2024-04-19 00:05:57 +08:00
func (p Program) Val(v interface{}) Expr {
switch v := v.(type) {
case int:
2024-04-21 15:12:57 +08:00
return p.IntVal(uint64(v), p.Int())
2024-04-20 22:05:45 +08:00
case bool:
return p.BoolVal(v)
2024-04-19 00:05:57 +08:00
case float64:
t := p.Float64()
ret := llvm.ConstFloat(t.ll, v)
return Expr{ret, t}
}
panic("todo")
}
2024-04-21 15:12:57 +08:00
func (b Builder) Const(v constant.Value, typ Type) Expr {
2024-04-28 06:23:21 +08:00
if v == nil {
return b.prog.Null(typ)
}
2024-04-21 15:12:57 +08:00
switch t := typ.t.(type) {
2024-04-20 22:05:45 +08:00
case *types.Basic:
2024-04-21 15:12:57 +08:00
kind := t.Kind()
switch {
case kind == types.Bool:
2024-04-20 22:05:45 +08:00
return b.prog.BoolVal(constant.BoolVal(v))
2024-04-21 15:12:57 +08:00
case kind >= types.Int && kind <= types.Uintptr:
if v, exact := constant.Uint64Val(v); exact {
return b.prog.IntVal(v, typ)
2024-04-20 22:30:38 +08:00
}
2024-04-20 22:05:45 +08:00
}
}
panic("todo")
}
2024-04-19 00:05:57 +08:00
// -----------------------------------------------------------------------------
2024-04-18 22:18:43 +08:00
const (
mathOpBase = token.ADD
mathOpLast = token.REM
)
var mathOpToLLVM = []llvm.Opcode{
int(token.ADD-mathOpBase)<<2 | vkSigned: llvm.Add,
int(token.ADD-mathOpBase)<<2 | vkUnsigned: llvm.Add,
int(token.ADD-mathOpBase)<<2 | vkFloat: llvm.FAdd,
int(token.SUB-mathOpBase)<<2 | vkSigned: llvm.Sub,
int(token.SUB-mathOpBase)<<2 | vkUnsigned: llvm.Sub,
int(token.SUB-mathOpBase)<<2 | vkFloat: llvm.FSub,
int(token.MUL-mathOpBase)<<2 | vkSigned: llvm.Mul,
int(token.MUL-mathOpBase)<<2 | vkUnsigned: llvm.Mul,
int(token.MUL-mathOpBase)<<2 | vkFloat: llvm.FMul,
int(token.QUO-mathOpBase)<<2 | vkSigned: llvm.SDiv,
int(token.QUO-mathOpBase)<<2 | vkUnsigned: llvm.UDiv,
int(token.QUO-mathOpBase)<<2 | vkFloat: llvm.FDiv,
int(token.REM-mathOpBase)<<2 | vkSigned: llvm.SRem,
int(token.REM-mathOpBase)<<2 | vkUnsigned: llvm.URem,
int(token.REM-mathOpBase)<<2 | vkFloat: llvm.FRem,
}
func mathOpIdx(op token.Token, x valueKind) int {
return int(op-mathOpBase)<<2 | x
}
// ADD SUB MUL QUO REM + - * / %
func isMathOp(op token.Token) bool {
return op >= mathOpBase && op <= mathOpLast
}
const (
logicOpBase = token.AND
logicOpLast = token.AND_NOT
)
var logicOpToLLVM = []llvm.Opcode{
token.AND - logicOpBase: llvm.And,
token.OR - logicOpBase: llvm.Or,
token.XOR - logicOpBase: llvm.Xor,
token.SHL - logicOpBase: llvm.Shl,
2024-04-20 22:05:45 +08:00
token.SHR - logicOpBase: llvm.AShr, // Arithmetic Shift Right
2024-04-18 22:18:43 +08:00
}
// AND OR XOR SHL SHR AND_NOT & | ^ << >> &^
func isLogicOp(op token.Token) bool {
return op >= logicOpBase && op <= logicOpLast
}
const (
predOpBase = token.EQL
predOpLast = token.GEQ
)
var intPredOpToLLVM = []llvm.IntPredicate{
token.EQL - predOpBase: llvm.IntEQ,
token.NEQ - predOpBase: llvm.IntNE,
token.LSS - predOpBase: llvm.IntSLT,
token.LEQ - predOpBase: llvm.IntSLE,
token.GTR - predOpBase: llvm.IntSGT,
token.GEQ - predOpBase: llvm.IntSGE,
}
var uintPredOpToLLVM = []llvm.IntPredicate{
token.EQL - predOpBase: llvm.IntEQ,
token.NEQ - predOpBase: llvm.IntNE,
token.LSS - predOpBase: llvm.IntULT,
token.LEQ - predOpBase: llvm.IntULE,
token.GTR - predOpBase: llvm.IntUGT,
token.GEQ - predOpBase: llvm.IntUGE,
}
var floatPredOpToLLVM = []llvm.FloatPredicate{
token.EQL - predOpBase: llvm.FloatOEQ,
token.NEQ - predOpBase: llvm.FloatONE,
token.LSS - predOpBase: llvm.FloatOLT,
token.LEQ - predOpBase: llvm.FloatOLE,
token.GTR - predOpBase: llvm.FloatOGT,
token.GEQ - predOpBase: llvm.FloatOGE,
}
// EQL NEQ LSS LEQ GTR GEQ == != < <= < >=
func isPredOp(op token.Token) bool {
return op >= predOpBase && op <= predOpLast
}
2024-04-20 17:31:49 +08:00
// The BinOp instruction yields the result of binary operation (x op y).
// op can be:
2024-04-18 22:18:43 +08:00
// ADD SUB MUL QUO REM + - * / %
// AND OR XOR SHL SHR AND_NOT & | ^ << >> &^
// EQL NEQ LSS LEQ GTR GEQ == != < <= < >=
func (b Builder) BinOp(op token.Token, x, y Expr) Expr {
2024-04-21 15:12:57 +08:00
if debugInstr {
log.Printf("BinOp %d, %v, %v\n", op, x.impl, y.impl)
}
2024-04-18 22:18:43 +08:00
switch {
case isMathOp(op): // op: + - * / %
kind := x.kind
switch kind {
case vkString, vkComplex:
panic("todo")
}
idx := mathOpIdx(op, kind)
if llop := mathOpToLLVM[idx]; llop != 0 {
return Expr{llvm.CreateBinOp(b.impl, llop, x.impl, y.impl), x.Type}
}
case isLogicOp(op): // op: & | ^ << >> &^
if op == token.AND_NOT {
panic("todo")
}
kind := x.kind
llop := logicOpToLLVM[op-logicOpBase]
if op == token.SHR && kind == vkUnsigned {
2024-04-20 22:05:45 +08:00
llop = llvm.LShr // Logical Shift Right
2024-04-18 22:18:43 +08:00
}
return Expr{llvm.CreateBinOp(b.impl, llop, x.impl, y.impl), x.Type}
case isPredOp(op): // op: == != < <= < >=
tret := b.prog.Bool()
kind := x.kind
switch kind {
case vkSigned:
pred := intPredOpToLLVM[op-predOpBase]
return Expr{llvm.CreateICmp(b.impl, pred, x.impl, y.impl), tret}
case vkUnsigned:
pred := uintPredOpToLLVM[op-predOpBase]
return Expr{llvm.CreateICmp(b.impl, pred, x.impl, y.impl), tret}
case vkFloat:
pred := floatPredOpToLLVM[op-predOpBase]
2024-04-22 15:09:08 +08:00
return Expr{llvm.CreateFCmp(b.impl, pred, x.impl, y.impl), tret}
2024-04-18 22:18:43 +08:00
case vkString, vkComplex, vkBool:
panic("todo")
}
}
panic("todo")
}
2024-04-20 17:31:49 +08:00
// The UnOp instruction yields the result of (op x).
// ARROW is channel receive.
// MUL is pointer indirection (load).
// XOR is bitwise complement.
// SUB is negation.
// NOT is logical negation.
func (b Builder) UnOp(op token.Token, x Expr) Expr {
switch op {
case token.MUL:
return b.Load(x)
}
2024-04-21 15:12:57 +08:00
if debugInstr {
log.Printf("UnOp %v, %v\n", op, x.impl)
}
2024-04-20 17:31:49 +08:00
panic("todo")
}
// Load returns the value at the pointer ptr.
func (b Builder) Load(ptr Expr) Expr {
2024-04-21 15:12:57 +08:00
if debugInstr {
2024-04-25 21:44:23 +08:00
log.Printf("Load %v\n", ptr.impl)
2024-04-21 15:12:57 +08:00
}
telem := b.prog.Elem(ptr.Type)
2024-04-20 17:31:49 +08:00
return Expr{llvm.CreateLoad(b.impl, telem.ll, ptr.impl), telem}
}
2024-04-20 22:05:45 +08:00
// Store stores val at the pointer ptr.
func (b Builder) Store(ptr, val Expr) Builder {
2024-04-21 15:12:57 +08:00
if debugInstr {
2024-04-25 21:44:23 +08:00
log.Printf("Store %v, %v\n", ptr.impl, val.impl)
2024-04-21 15:12:57 +08:00
}
2024-04-20 22:05:45 +08:00
b.impl.CreateStore(val.impl, ptr.impl)
return b
}
2024-04-27 07:47:10 +08:00
// The FieldAddr instruction yields the address of Field of *struct X.
//
// The field is identified by its index within the field list of the
// struct type of X.
//
// Dynamically, this instruction panics if X evaluates to a nil
// pointer.
//
// Type() returns a (possibly named) *types.Pointer.
//
// Pos() returns the position of the ast.SelectorExpr.Sel for the
// field, if explicit in the source. For implicit selections, returns
// the position of the inducing explicit selection. If produced for a
// struct literal S{f: e}, it returns the position of the colon; for
// S{e} it returns the start of expression e.
//
// Example printed form:
//
// t1 = &t0.name [#1]
func (b Builder) FieldAddr(x Expr, idx int) Expr {
if debugInstr {
log.Printf("FieldAddr %v, %d\n", x.impl, idx)
}
prog := b.prog
tstruc := prog.Elem(x.Type)
telem := prog.Field(tstruc, idx)
pt := prog.Pointer(telem)
2024-04-27 08:17:46 +08:00
return Expr{llvm.CreateStructGEP(b.impl, tstruc.ll, x.impl, idx), pt}
2024-04-27 07:47:10 +08:00
}
2024-04-21 15:12:57 +08:00
// The IndexAddr instruction yields the address of the element at
// index `idx` of collection `x`. `idx` is an integer expression.
//
// The elements of maps and strings are not addressable; use Lookup (map),
// Index (string), or MapUpdate instead.
//
// Dynamically, this instruction panics if `x` evaluates to a nil *array
// pointer.
//
// Example printed form:
//
// t2 = &t0[t1]
func (b Builder) IndexAddr(x, idx Expr) Expr {
if debugInstr {
log.Printf("IndexAddr %v, %v\n", x.impl, idx.impl)
}
prog := b.prog
telem := prog.Index(x.Type)
pt := prog.Pointer(telem)
indices := []llvm.Value{idx.impl}
return Expr{llvm.CreateInBoundsGEP(b.impl, telem.ll, x.impl, indices), pt}
}
// The Alloc instruction reserves space for a variable of the given type,
// zero-initializes it, and yields its address.
//
// If heap is false, Alloc zero-initializes the same local variable in
// the call frame and returns its address; in this case the Alloc must
// be present in Function.Locals. We call this a "local" alloc.
//
// If heap is true, Alloc allocates a new zero-initialized variable
// each time the instruction is executed. We call this a "new" alloc.
//
// When Alloc is applied to a channel, map or slice type, it returns
// the address of an uninitialized (nil) reference of that kind; store
// the result of MakeSlice, MakeMap or MakeChan in that location to
// instantiate these types.
//
// Example printed form:
//
// t0 = local int
// t1 = new int
func (b Builder) Alloc(t Type, heap bool) (ret Expr) {
if debugInstr {
2024-04-27 07:47:10 +08:00
log.Printf("Alloc %v, %v\n", t.t, heap)
2024-04-21 15:12:57 +08:00
}
telem := b.prog.Elem(t)
if heap {
ret.impl = llvm.CreateAlloca(b.impl, telem.ll)
} else {
panic("todo")
}
// TODO: zero-initialize
ret.Type = t
return
}
2024-04-26 00:31:02 +08:00
// The ChangeType instruction applies to X a value-preserving type
// change to Type().
//
// Type changes are permitted:
// - between a named type and its underlying type.
// - between two named types of the same underlying type.
// - between (possibly named) pointers to identical base types.
// - from a bidirectional channel to a read- or write-channel,
// optionally adding/removing a name.
// - between a type (t) and an instance of the type (tσ), i.e.
// Type() == σ(X.Type()) (or X.Type()== σ(Type())) where
// σ is the type substitution of Parent().TypeParams by
// Parent().TypeArgs.
//
// This operation cannot fail dynamically.
//
// Type changes may to be to or from a type parameter (or both). All
// types in the type set of X.Type() have a value-preserving type
// change to all types in the type set of Type().
//
// Example printed form:
//
// t1 = changetype *int <- IntPtr (t0)
func (b Builder) ChangeType(t Type, x Expr) (ret Expr) {
if debugInstr {
log.Printf("ChangeType %v, %v\n", t.t, x.impl)
}
typ := t.t
switch typ.(type) {
2024-04-28 06:23:21 +08:00
default:
ret.impl = b.impl.CreateBitCast(x.impl, t.ll, "bitCast")
ret.Type = b.prog.Type(typ)
return
}
}
// The Convert instruction yields the conversion of value X to type
// Type(). One or both of those types is basic (but possibly named).
//
// A conversion may change the value and representation of its operand.
// Conversions are permitted:
// - between real numeric types.
// - between complex numeric types.
// - between string and []byte or []rune.
// - between pointers and unsafe.Pointer.
// - between unsafe.Pointer and uintptr.
// - from (Unicode) integer to (UTF-8) string.
//
// A conversion may imply a type name change also.
//
// Conversions may to be to or from a type parameter. All types in
// the type set of X.Type() can be converted to all types in the type
// set of Type().
//
// This operation cannot fail dynamically.
//
// Conversions of untyped string/number/bool constants to a specific
// representation are eliminated during SSA construction.
//
// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
// from an explicit conversion in the source.
//
// Example printed form:
//
// t1 = convert []byte <- string (t0)
func (b Builder) Convert(t Type, x Expr) (ret Expr) {
typ := t.t
ret.Type = b.prog.Type(typ)
switch und := typ.Underlying().(type) {
case *types.Basic:
kind := und.Kind()
switch {
case kind >= types.Int && kind <= types.Uintptr:
ret.impl = b.impl.CreateIntCast(x.impl, t.ll, "castInt")
return
case kind == types.UnsafePointer:
ret.impl = b.impl.CreatePointerCast(x.impl, t.ll, "castPtr")
return
}
2024-04-26 00:31:02 +08:00
case *types.Pointer:
ret.impl = b.impl.CreatePointerCast(x.impl, t.ll, "castPtr")
return
}
panic("todo")
}
2024-04-27 20:45:55 +08:00
// MakeInterface constructs an instance of an interface type from a
// value of a concrete type.
//
// Use Program.MethodSets.MethodSet(X.Type()) to find the method-set
// of X, and Program.MethodValue(m) to find the implementation of a method.
//
// To construct the zero value of an interface type T, use:
//
// NewConst(constant.MakeNil(), T, pos)
//
// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
// from an explicit conversion in the source.
//
// Example printed form:
//
// t1 = make interface{} <- int (42:int)
// t2 = make Stringer <- t0
func (b Builder) MakeInterface(inter types.Type, x Expr, mayDelay bool) (ret Expr) {
if debugInstr {
log.Printf("MakeInterface %v, %v\n", inter, x.impl)
}
t := inter.Underlying().(*types.Interface)
isAny := t.Empty()
2024-04-27 21:32:48 +08:00
fnDo := func() Expr {
2024-04-27 20:45:55 +08:00
pkg := b.fn.pkg
switch x.kind {
case vkSigned, vkUnsigned, vkFloat:
fn := pkg.rtFunc("MakeAnyInt")
return b.InlineCall(fn, x)
}
panic("todo")
}
if mayDelay && isAny {
return DelayExpr(fnDo)
}
2024-04-27 21:32:48 +08:00
return fnDo()
2024-04-27 20:45:55 +08:00
}
2024-04-27 17:39:25 +08:00
// The TypeAssert instruction tests whether interface value X has type
// AssertedType.
//
// If !CommaOk, on success it returns v, the result of the conversion
// (defined below); on failure it panics.
//
// If CommaOk: on success it returns a pair (v, true) where v is the
// result of the conversion; on failure it returns (z, false) where z
// is AssertedType's zero value. The components of the pair must be
// accessed using the Extract instruction.
//
// If Underlying: tests whether interface value X has the underlying
// type AssertedType.
//
// If AssertedType is a concrete type, TypeAssert checks whether the
// dynamic type in interface X is equal to it, and if so, the result
// of the conversion is a copy of the value in the interface.
//
// If AssertedType is an interface, TypeAssert checks whether the
// dynamic type of the interface is assignable to it, and if so, the
// result of the conversion is a copy of the interface value X.
// If AssertedType is a superinterface of X.Type(), the operation will
// fail iff the operand is nil. (Contrast with ChangeInterface, which
// performs no nil-check.)
//
// Type() reflects the actual type of the result, possibly a
// 2-types.Tuple; AssertedType is the asserted type.
//
// Depending on the TypeAssert's purpose, Pos may return:
// - the ast.CallExpr.Lparen of an explicit T(e) conversion;
// - the ast.TypeAssertExpr.Lparen of an explicit e.(T) operation;
// - the ast.CaseClause.Case of a case of a type-switch statement;
// - the Ident(m).NamePos of an interface method value i.m
// (for which TypeAssert may be used to effect the nil check).
//
// Example printed form:
//
// t1 = typeassert t0.(int)
// t3 = typeassert,ok t2.(T)
func (b Builder) TypeAssert(x Expr, assertedTyp Type, commaOk bool) (ret Expr) {
if debugInstr {
log.Printf("TypeAssert %v, %v, %v\n", x.impl, assertedTyp.t, commaOk)
}
switch assertedTyp.kind {
2024-04-27 20:45:55 +08:00
case vkSigned, vkUnsigned, vkFloat:
2024-04-27 17:39:25 +08:00
pkg := b.fn.pkg
fnName := "I2Int"
if commaOk {
fnName = "CheckI2Int"
}
fn := pkg.rtFunc(fnName)
var kind types.BasicKind
switch t := assertedTyp.t.(type) {
case *types.Basic:
kind = t.Kind()
default:
panic("todo")
}
typ := b.InlineCall(pkg.rtFunc("Basic"), b.prog.Val(int(kind)))
return b.InlineCall(fn, x, typ)
}
panic("todo")
}
2024-04-18 22:18:43 +08:00
// -----------------------------------------------------------------------------
2024-04-28 06:23:21 +08:00
// TODO(xsw): make inline call
2024-04-27 17:39:25 +08:00
func (b Builder) InlineCall(fn Expr, args ...Expr) (ret Expr) {
return b.Call(fn, args...)
}
2024-04-21 15:12:57 +08:00
// The Call instruction represents a function or method call.
//
// The Call instruction yields the function result if there is exactly
// one. Otherwise it returns a tuple, the components of which are
// accessed via Extract.
//
// Example printed form:
//
// t2 = println(t0, t1)
// t4 = t3()
// t7 = invoke t5.Println(...t6)
2024-04-19 00:05:57 +08:00
func (b Builder) Call(fn Expr, args ...Expr) (ret Expr) {
2024-04-21 15:12:57 +08:00
if debugInstr {
var b bytes.Buffer
2024-04-25 21:44:23 +08:00
fmt.Fprint(&b, "Call ", fn.impl.Name())
2024-04-21 15:12:57 +08:00
for _, arg := range args {
fmt.Fprint(&b, ", ", arg.impl)
}
log.Println(b.String())
}
2024-04-19 00:05:57 +08:00
switch t := fn.t.(type) {
case *types.Signature:
ret.Type = b.prog.retType(t)
default:
panic("todo")
2024-04-18 15:03:10 +08:00
}
2024-04-19 00:05:57 +08:00
ret.impl = llvm.CreateCall(b.impl, fn.ll, fn.impl, llvmValues(args))
return
2024-04-18 15:03:10 +08:00
}
2024-04-18 22:18:43 +08:00
2024-04-26 00:31:02 +08:00
// A Builtin represents a specific use of a built-in function, e.g. len.
//
// Builtins are immutable values. Builtins do not have addresses.
//
// `fn` indicates the function: one of the built-in functions from the
// Go spec (excluding "make" and "new").
func (b Builder) BuiltinCall(fn string, args ...Expr) (ret Expr) {
panic("todo")
}
2024-04-18 22:18:43 +08:00
// -----------------------------------------------------------------------------