Files
llgo/ssa/expr.go

366 lines
9.6 KiB
Go
Raw Normal View History

2024-04-18 01:18:41 +08:00
/*
* Copyright (c) 2024 The GoPlus Authors (goplus.org). All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package ssa
2024-04-18 15:03:10 +08:00
import (
2024-04-21 15:12:57 +08:00
"bytes"
"fmt"
2024-04-20 22:05:45 +08:00
"go/constant"
2024-04-18 22:18:43 +08:00
"go/token"
2024-04-19 00:05:57 +08:00
"go/types"
2024-04-21 15:12:57 +08:00
"log"
2024-04-18 22:18:43 +08:00
2024-04-18 15:03:10 +08:00
"github.com/goplus/llvm"
)
2024-04-18 22:18:43 +08:00
// -----------------------------------------------------------------------------
type Expr struct {
impl llvm.Value
Type
}
2024-04-19 00:05:57 +08:00
// -----------------------------------------------------------------------------
func llvmValues(vals []Expr) []llvm.Value {
ret := make([]llvm.Value, len(vals))
for i, v := range vals {
ret[i] = v.impl
}
return ret
}
// -----------------------------------------------------------------------------
2024-04-21 00:22:39 +08:00
func (p Program) Null(t Type) Expr {
return Expr{llvm.ConstNull(t.ll), t}
}
2024-04-20 22:05:45 +08:00
func (p Program) BoolVal(v bool) Expr {
t := p.Bool()
var bv uint64
if v {
bv = 1
}
ret := llvm.ConstInt(t.ll, bv, v)
return Expr{ret, t}
}
2024-04-21 15:12:57 +08:00
func (p Program) IntVal(v uint64, t Type) Expr {
ret := llvm.ConstInt(t.ll, v, false)
2024-04-20 22:30:38 +08:00
return Expr{ret, t}
}
2024-04-19 00:05:57 +08:00
func (p Program) Val(v interface{}) Expr {
switch v := v.(type) {
case int:
2024-04-21 15:12:57 +08:00
return p.IntVal(uint64(v), p.Int())
2024-04-20 22:05:45 +08:00
case bool:
return p.BoolVal(v)
2024-04-19 00:05:57 +08:00
case float64:
t := p.Float64()
ret := llvm.ConstFloat(t.ll, v)
return Expr{ret, t}
}
panic("todo")
}
2024-04-21 15:12:57 +08:00
func (b Builder) Const(v constant.Value, typ Type) Expr {
switch t := typ.t.(type) {
2024-04-20 22:05:45 +08:00
case *types.Basic:
2024-04-21 15:12:57 +08:00
kind := t.Kind()
switch {
case kind == types.Bool:
2024-04-20 22:05:45 +08:00
return b.prog.BoolVal(constant.BoolVal(v))
2024-04-21 15:12:57 +08:00
case kind >= types.Int && kind <= types.Uintptr:
if v, exact := constant.Uint64Val(v); exact {
return b.prog.IntVal(v, typ)
2024-04-20 22:30:38 +08:00
}
2024-04-20 22:05:45 +08:00
}
}
panic("todo")
}
2024-04-19 00:05:57 +08:00
// -----------------------------------------------------------------------------
2024-04-18 22:18:43 +08:00
const (
mathOpBase = token.ADD
mathOpLast = token.REM
)
var mathOpToLLVM = []llvm.Opcode{
int(token.ADD-mathOpBase)<<2 | vkSigned: llvm.Add,
int(token.ADD-mathOpBase)<<2 | vkUnsigned: llvm.Add,
int(token.ADD-mathOpBase)<<2 | vkFloat: llvm.FAdd,
int(token.SUB-mathOpBase)<<2 | vkSigned: llvm.Sub,
int(token.SUB-mathOpBase)<<2 | vkUnsigned: llvm.Sub,
int(token.SUB-mathOpBase)<<2 | vkFloat: llvm.FSub,
int(token.MUL-mathOpBase)<<2 | vkSigned: llvm.Mul,
int(token.MUL-mathOpBase)<<2 | vkUnsigned: llvm.Mul,
int(token.MUL-mathOpBase)<<2 | vkFloat: llvm.FMul,
int(token.QUO-mathOpBase)<<2 | vkSigned: llvm.SDiv,
int(token.QUO-mathOpBase)<<2 | vkUnsigned: llvm.UDiv,
int(token.QUO-mathOpBase)<<2 | vkFloat: llvm.FDiv,
int(token.REM-mathOpBase)<<2 | vkSigned: llvm.SRem,
int(token.REM-mathOpBase)<<2 | vkUnsigned: llvm.URem,
int(token.REM-mathOpBase)<<2 | vkFloat: llvm.FRem,
}
func mathOpIdx(op token.Token, x valueKind) int {
return int(op-mathOpBase)<<2 | x
}
// ADD SUB MUL QUO REM + - * / %
func isMathOp(op token.Token) bool {
return op >= mathOpBase && op <= mathOpLast
}
const (
logicOpBase = token.AND
logicOpLast = token.AND_NOT
)
var logicOpToLLVM = []llvm.Opcode{
token.AND - logicOpBase: llvm.And,
token.OR - logicOpBase: llvm.Or,
token.XOR - logicOpBase: llvm.Xor,
token.SHL - logicOpBase: llvm.Shl,
2024-04-20 22:05:45 +08:00
token.SHR - logicOpBase: llvm.AShr, // Arithmetic Shift Right
2024-04-18 22:18:43 +08:00
}
// AND OR XOR SHL SHR AND_NOT & | ^ << >> &^
func isLogicOp(op token.Token) bool {
return op >= logicOpBase && op <= logicOpLast
}
const (
predOpBase = token.EQL
predOpLast = token.GEQ
)
var intPredOpToLLVM = []llvm.IntPredicate{
token.EQL - predOpBase: llvm.IntEQ,
token.NEQ - predOpBase: llvm.IntNE,
token.LSS - predOpBase: llvm.IntSLT,
token.LEQ - predOpBase: llvm.IntSLE,
token.GTR - predOpBase: llvm.IntSGT,
token.GEQ - predOpBase: llvm.IntSGE,
}
var uintPredOpToLLVM = []llvm.IntPredicate{
token.EQL - predOpBase: llvm.IntEQ,
token.NEQ - predOpBase: llvm.IntNE,
token.LSS - predOpBase: llvm.IntULT,
token.LEQ - predOpBase: llvm.IntULE,
token.GTR - predOpBase: llvm.IntUGT,
token.GEQ - predOpBase: llvm.IntUGE,
}
var floatPredOpToLLVM = []llvm.FloatPredicate{
token.EQL - predOpBase: llvm.FloatOEQ,
token.NEQ - predOpBase: llvm.FloatONE,
token.LSS - predOpBase: llvm.FloatOLT,
token.LEQ - predOpBase: llvm.FloatOLE,
token.GTR - predOpBase: llvm.FloatOGT,
token.GEQ - predOpBase: llvm.FloatOGE,
}
// EQL NEQ LSS LEQ GTR GEQ == != < <= < >=
func isPredOp(op token.Token) bool {
return op >= predOpBase && op <= predOpLast
}
2024-04-20 17:31:49 +08:00
// The BinOp instruction yields the result of binary operation (x op y).
// op can be:
2024-04-18 22:18:43 +08:00
// ADD SUB MUL QUO REM + - * / %
// AND OR XOR SHL SHR AND_NOT & | ^ << >> &^
// EQL NEQ LSS LEQ GTR GEQ == != < <= < >=
func (b Builder) BinOp(op token.Token, x, y Expr) Expr {
2024-04-21 15:12:57 +08:00
if debugInstr {
log.Printf("BinOp %d, %v, %v\n", op, x.impl, y.impl)
}
2024-04-18 22:18:43 +08:00
switch {
case isMathOp(op): // op: + - * / %
kind := x.kind
switch kind {
case vkString, vkComplex:
panic("todo")
}
idx := mathOpIdx(op, kind)
if llop := mathOpToLLVM[idx]; llop != 0 {
return Expr{llvm.CreateBinOp(b.impl, llop, x.impl, y.impl), x.Type}
}
case isLogicOp(op): // op: & | ^ << >> &^
if op == token.AND_NOT {
panic("todo")
}
kind := x.kind
llop := logicOpToLLVM[op-logicOpBase]
if op == token.SHR && kind == vkUnsigned {
2024-04-20 22:05:45 +08:00
llop = llvm.LShr // Logical Shift Right
2024-04-18 22:18:43 +08:00
}
return Expr{llvm.CreateBinOp(b.impl, llop, x.impl, y.impl), x.Type}
case isPredOp(op): // op: == != < <= < >=
tret := b.prog.Bool()
kind := x.kind
switch kind {
case vkSigned:
pred := intPredOpToLLVM[op-predOpBase]
return Expr{llvm.CreateICmp(b.impl, pred, x.impl, y.impl), tret}
case vkUnsigned:
pred := uintPredOpToLLVM[op-predOpBase]
return Expr{llvm.CreateICmp(b.impl, pred, x.impl, y.impl), tret}
case vkFloat:
pred := floatPredOpToLLVM[op-predOpBase]
2024-04-22 15:09:08 +08:00
return Expr{llvm.CreateFCmp(b.impl, pred, x.impl, y.impl), tret}
2024-04-18 22:18:43 +08:00
case vkString, vkComplex, vkBool:
panic("todo")
}
}
panic("todo")
}
2024-04-20 17:31:49 +08:00
// The UnOp instruction yields the result of (op x).
// ARROW is channel receive.
// MUL is pointer indirection (load).
// XOR is bitwise complement.
// SUB is negation.
// NOT is logical negation.
func (b Builder) UnOp(op token.Token, x Expr) Expr {
switch op {
case token.MUL:
return b.Load(x)
}
2024-04-21 15:12:57 +08:00
if debugInstr {
log.Printf("UnOp %v, %v\n", op, x.impl)
}
2024-04-20 17:31:49 +08:00
panic("todo")
}
// Load returns the value at the pointer ptr.
func (b Builder) Load(ptr Expr) Expr {
2024-04-21 15:12:57 +08:00
if debugInstr {
2024-04-21 17:54:51 +08:00
log.Printf("Load %v\n", ptr.impl.Name())
2024-04-21 15:12:57 +08:00
}
telem := b.prog.Elem(ptr.Type)
2024-04-20 17:31:49 +08:00
return Expr{llvm.CreateLoad(b.impl, telem.ll, ptr.impl), telem}
}
2024-04-20 22:05:45 +08:00
// Store stores val at the pointer ptr.
func (b Builder) Store(ptr, val Expr) Builder {
2024-04-21 15:12:57 +08:00
if debugInstr {
2024-04-21 17:54:51 +08:00
log.Printf("Store %v, %v\n", ptr.impl.Name(), val.impl)
2024-04-21 15:12:57 +08:00
}
2024-04-20 22:05:45 +08:00
b.impl.CreateStore(val.impl, ptr.impl)
return b
}
2024-04-21 15:12:57 +08:00
// The IndexAddr instruction yields the address of the element at
// index `idx` of collection `x`. `idx` is an integer expression.
//
// The elements of maps and strings are not addressable; use Lookup (map),
// Index (string), or MapUpdate instead.
//
// Dynamically, this instruction panics if `x` evaluates to a nil *array
// pointer.
//
// Example printed form:
//
// t2 = &t0[t1]
func (b Builder) IndexAddr(x, idx Expr) Expr {
if debugInstr {
log.Printf("IndexAddr %v, %v\n", x.impl, idx.impl)
}
prog := b.prog
telem := prog.Index(x.Type)
pt := prog.Pointer(telem)
indices := []llvm.Value{idx.impl}
return Expr{llvm.CreateInBoundsGEP(b.impl, telem.ll, x.impl, indices), pt}
}
// The Alloc instruction reserves space for a variable of the given type,
// zero-initializes it, and yields its address.
//
// If heap is false, Alloc zero-initializes the same local variable in
// the call frame and returns its address; in this case the Alloc must
// be present in Function.Locals. We call this a "local" alloc.
//
// If heap is true, Alloc allocates a new zero-initialized variable
// each time the instruction is executed. We call this a "new" alloc.
//
// When Alloc is applied to a channel, map or slice type, it returns
// the address of an uninitialized (nil) reference of that kind; store
// the result of MakeSlice, MakeMap or MakeChan in that location to
// instantiate these types.
//
// Example printed form:
//
// t0 = local int
// t1 = new int
func (b Builder) Alloc(t Type, heap bool) (ret Expr) {
if debugInstr {
log.Printf("Alloc %v, %v\n", t.ll, heap)
}
telem := b.prog.Elem(t)
if heap {
ret.impl = llvm.CreateAlloca(b.impl, telem.ll)
} else {
panic("todo")
}
// TODO: zero-initialize
ret.Type = t
return
}
2024-04-18 22:18:43 +08:00
// -----------------------------------------------------------------------------
2024-04-21 15:12:57 +08:00
// The Call instruction represents a function or method call.
//
// The Call instruction yields the function result if there is exactly
// one. Otherwise it returns a tuple, the components of which are
// accessed via Extract.
//
// Example printed form:
//
// t2 = println(t0, t1)
// t4 = t3()
// t7 = invoke t5.Println(...t6)
2024-04-19 00:05:57 +08:00
func (b Builder) Call(fn Expr, args ...Expr) (ret Expr) {
2024-04-21 15:12:57 +08:00
if debugInstr {
var b bytes.Buffer
fmt.Fprint(&b, "Call @", fn.impl.Name())
for _, arg := range args {
fmt.Fprint(&b, ", ", arg.impl)
}
log.Println(b.String())
}
2024-04-19 00:05:57 +08:00
switch t := fn.t.(type) {
case *types.Signature:
ret.Type = b.prog.retType(t)
default:
panic("todo")
2024-04-18 15:03:10 +08:00
}
2024-04-19 00:05:57 +08:00
ret.impl = llvm.CreateCall(b.impl, fn.ll, fn.impl, llvmValues(args))
return
2024-04-18 15:03:10 +08:00
}
2024-04-18 22:18:43 +08:00
// -----------------------------------------------------------------------------