Files
llgo/internal/lib/syscall/exec_unix.go

235 lines
6.6 KiB
Go
Raw Normal View History

2024-07-12 00:39:16 +08:00
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build unix
// Fork, exec, wait, etc.
package syscall
import (
2024-07-18 15:45:54 +08:00
"errors"
"runtime"
2024-07-12 00:39:16 +08:00
"sync"
"syscall"
2024-07-18 15:45:54 +08:00
"unsafe"
"github.com/goplus/llgo/c"
"github.com/goplus/llgo/c/os"
2024-07-12 00:39:16 +08:00
)
// ForkLock is used to synchronize creation of new file descriptors
// with fork.
//
// We want the child in a fork/exec sequence to inherit only the
// file descriptors we intend. To do that, we mark all file
// descriptors close-on-exec and then, in the child, explicitly
// unmark the ones we want the exec'ed program to keep.
// Unix doesn't make this easy: there is, in general, no way to
// allocate a new file descriptor close-on-exec. Instead you
// have to allocate the descriptor and then mark it close-on-exec.
// If a fork happens between those two events, the child's exec
// will inherit an unwanted file descriptor.
//
// This lock solves that race: the create new fd/mark close-on-exec
// operation is done holding ForkLock for reading, and the fork itself
// is done holding ForkLock for writing. At least, that's the idea.
// There are some complications.
//
// Some system calls that create new file descriptors can block
// for arbitrarily long times: open on a hung NFS server or named
// pipe, accept on a socket, and so on. We can't reasonably grab
// the lock across those operations.
//
// It is worse to inherit some file descriptors than others.
// If a non-malicious child accidentally inherits an open ordinary file,
// that's not a big deal. On the other hand, if a long-lived child
// accidentally inherits the write end of a pipe, then the reader
// of that pipe will not see EOF until that child exits, potentially
// causing the parent program to hang. This is a common problem
// in threaded C programs that use popen.
//
// Luckily, the file descriptors that are most important not to
// inherit are not the ones that can take an arbitrarily long time
// to create: pipe returns instantly, and the net package uses
// non-blocking I/O to accept on a listening socket.
// The rules for which file descriptor-creating operations use the
// ForkLock are as follows:
//
// - Pipe. Use pipe2 if available. Otherwise, does not block,
// so use ForkLock.
// - Socket. Use SOCK_CLOEXEC if available. Otherwise, does not
// block, so use ForkLock.
// - Open. Use O_CLOEXEC if available. Otherwise, may block,
// so live with the race.
// - Dup. Use F_DUPFD_CLOEXEC or dup3 if available. Otherwise,
// does not block, so use ForkLock.
var ForkLock sync.RWMutex
func CloseOnExec(fd int) {
/* TODO(xsw):
fcntl(fd, F_SETFD, FD_CLOEXEC)
*/
panic("todo: syscall.CloseOnExec")
}
func SetNonblock(fd int, nonblocking bool) (err error) {
/* TODO(xsw):
flag, err := fcntl(fd, F_GETFL, 0)
if err != nil {
return err
}
if nonblocking {
flag |= O_NONBLOCK
} else {
flag &^= O_NONBLOCK
}
_, err = fcntl(fd, F_SETFL, flag)
return err
*/
panic("todo: syscall.SetNonblock")
}
// Credential holds user and group identities to be assumed
// by a child process started by StartProcess.
type Credential struct {
Uid uint32 // User ID.
Gid uint32 // Group ID.
Groups []uint32 // Supplementary group IDs.
NoSetGroups bool // If true, don't set supplementary groups
}
// ProcAttr holds attributes that will be applied to a new process started
// by StartProcess.
type ProcAttr struct {
Dir string // Current working directory.
Env []string // Environment.
Files []uintptr // File descriptors.
Sys *SysProcAttr
}
var zeroProcAttr ProcAttr
var zeroSysProcAttr SysProcAttr
func forkExec(argv0 string, argv []string, attr *ProcAttr) (pid int, err error) {
var p [2]int
var n int
var err1 Errno
var wstatus WaitStatus
if attr == nil {
attr = &zeroProcAttr
}
sys := attr.Sys
if sys == nil {
sys = &zeroSysProcAttr
}
// Convert args to C form.
2024-07-18 15:45:54 +08:00
argv0p := c.AllocaCStr(argv0)
argvp := c.AllocaCStrs(argv, true)
envvp := c.AllocaCStrs(attr.Env, true)
2024-07-12 00:39:16 +08:00
if (runtime.GOOS == "freebsd" || runtime.GOOS == "dragonfly") && len(argv) > 0 && len(argv[0]) > len(argv0) {
2024-07-18 15:45:54 +08:00
*argvp = argv0p
2024-07-12 00:39:16 +08:00
}
2024-07-18 15:45:54 +08:00
var chroot *c.Char
2024-07-12 00:39:16 +08:00
if sys.Chroot != "" {
2024-07-18 15:45:54 +08:00
chroot = c.AllocaCStr(sys.Chroot)
2024-07-12 00:39:16 +08:00
}
2024-07-18 15:45:54 +08:00
var dir *c.Char
2024-07-12 00:39:16 +08:00
if attr.Dir != "" {
2024-07-18 15:45:54 +08:00
dir = c.AllocaCStr(attr.Dir)
2024-07-12 00:39:16 +08:00
}
// Both Setctty and Foreground use the Ctty field,
// but they give it slightly different meanings.
if sys.Setctty && sys.Foreground {
2024-07-18 15:45:54 +08:00
return 0, errors.New("both Setctty and Foreground set in SysProcAttr")
2024-07-12 00:39:16 +08:00
}
if sys.Setctty && sys.Ctty >= len(attr.Files) {
2024-07-18 15:45:54 +08:00
return 0, errors.New("Setctty set but Ctty not valid in child")
2024-07-12 00:39:16 +08:00
}
acquireForkLock()
// Allocate child status pipe close on exec.
if err = forkExecPipe(p[:]); err != nil {
releaseForkLock()
return 0, err
}
// Kick off child.
pid, err1 = forkAndExecInChild(argv0p, argvp, envvp, chroot, dir, attr, sys, p[1])
if err1 != 0 {
Close(p[0])
Close(p[1])
releaseForkLock()
return 0, Errno(err1)
}
releaseForkLock()
// Read child error status from pipe.
Close(p[1])
for {
n, err = readlen(p[0], (*byte)(unsafe.Pointer(&err1)), int(unsafe.Sizeof(err1)))
if err != EINTR {
break
}
}
Close(p[0])
if err != nil || n != 0 {
if n == int(unsafe.Sizeof(err1)) {
err = Errno(err1)
}
if err == nil {
err = EPIPE
}
// Child failed; wait for it to exit, to make sure
// the zombies don't accumulate.
_, err1 := Wait4(pid, &wstatus, 0, nil)
for err1 == EINTR {
_, err1 = Wait4(pid, &wstatus, 0, nil)
}
return 0, err
}
// Read got EOF, so pipe closed on exec, so exec succeeded.
return pid, nil
}
// Combination of fork and exec, careful to be thread safe.
func ForkExec(argv0 string, argv []string, attr *ProcAttr) (pid int, err error) {
return forkExec(argv0, argv, attr)
}
// StartProcess wraps ForkExec for package os.
func StartProcess(argv0 string, argv []string, attr *ProcAttr) (pid int, handle uintptr, err error) {
pid, err = forkExec(argv0, argv, attr)
return pid, 0, err
}
/* TODO(xsw):
// Implemented in runtime package.
func runtime_BeforeExec()
func runtime_AfterExec()
// execveLibc is non-nil on OS using libc syscall, set to execve in exec_libc.go; this
// avoids a build dependency for other platforms.
var execveLibc func(path uintptr, argv uintptr, envp uintptr) Errno
var execveDarwin func(path *byte, argv **byte, envp **byte) error
var execveOpenBSD func(path *byte, argv **byte, envp **byte) error
*/
// Exec invokes the execve(2) system call.
func Exec(argv0 string, argv []string, envv []string) (err error) {
ret := os.Execve(c.AllocaCStr(argv0), c.AllocaCStrs(argv, true), c.AllocaCStrs(envv, true))
if ret == 0 {
return nil
2024-07-12 00:39:16 +08:00
}
return syscall.Errno(ret)
2024-07-12 00:39:16 +08:00
}