build: separate compiler and libs

This commit is contained in:
Li Jie
2025-01-07 21:49:08 +08:00
parent b0123567cd
commit 1172e5bdce
559 changed files with 190 additions and 176 deletions

View File

@@ -0,0 +1,218 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package typeparams
import (
"errors"
"fmt"
"go/types"
"os"
"strings"
)
//go:generate go run copytermlist.go
const debug = false
var ErrEmptyTypeSet = errors.New("empty type set")
// StructuralTerms returns a slice of terms representing the normalized
// structural type restrictions of a type parameter, if any.
//
// Structural type restrictions of a type parameter are created via
// non-interface types embedded in its constraint interface (directly, or via a
// chain of interface embeddings). For example, in the declaration
//
// type T[P interface{~int; m()}] int
//
// the structural restriction of the type parameter P is ~int.
//
// With interface embedding and unions, the specification of structural type
// restrictions may be arbitrarily complex. For example, consider the
// following:
//
// type A interface{ ~string|~[]byte }
//
// type B interface{ int|string }
//
// type C interface { ~string|~int }
//
// type T[P interface{ A|B; C }] int
//
// In this example, the structural type restriction of P is ~string|int: A|B
// expands to ~string|~[]byte|int|string, which reduces to ~string|~[]byte|int,
// which when intersected with C (~string|~int) yields ~string|int.
//
// StructuralTerms computes these expansions and reductions, producing a
// "normalized" form of the embeddings. A structural restriction is normalized
// if it is a single union containing no interface terms, and is minimal in the
// sense that removing any term changes the set of types satisfying the
// constraint. It is left as a proof for the reader that, modulo sorting, there
// is exactly one such normalized form.
//
// Because the minimal representation always takes this form, StructuralTerms
// returns a slice of tilde terms corresponding to the terms of the union in
// the normalized structural restriction. An error is returned if the
// constraint interface is invalid, exceeds complexity bounds, or has an empty
// type set. In the latter case, StructuralTerms returns ErrEmptyTypeSet.
//
// StructuralTerms makes no guarantees about the order of terms, except that it
// is deterministic.
func StructuralTerms(tparam *types.TypeParam) ([]*types.Term, error) {
constraint := tparam.Constraint()
if constraint == nil {
return nil, fmt.Errorf("%s has nil constraint", tparam)
}
iface, _ := constraint.Underlying().(*types.Interface)
if iface == nil {
return nil, fmt.Errorf("constraint is %T, not *types.Interface", constraint.Underlying())
}
return InterfaceTermSet(iface)
}
// InterfaceTermSet computes the normalized terms for a constraint interface,
// returning an error if the term set cannot be computed or is empty. In the
// latter case, the error will be ErrEmptyTypeSet.
//
// See the documentation of StructuralTerms for more information on
// normalization.
func InterfaceTermSet(iface *types.Interface) ([]*types.Term, error) {
return computeTermSet(iface)
}
// UnionTermSet computes the normalized terms for a union, returning an error
// if the term set cannot be computed or is empty. In the latter case, the
// error will be ErrEmptyTypeSet.
//
// See the documentation of StructuralTerms for more information on
// normalization.
func UnionTermSet(union *types.Union) ([]*types.Term, error) {
return computeTermSet(union)
}
func computeTermSet(typ types.Type) ([]*types.Term, error) {
tset, err := computeTermSetInternal(typ, make(map[types.Type]*termSet), 0)
if err != nil {
return nil, err
}
if tset.terms.isEmpty() {
return nil, ErrEmptyTypeSet
}
if tset.terms.isAll() {
return nil, nil
}
var terms []*types.Term
for _, term := range tset.terms {
terms = append(terms, types.NewTerm(term.tilde, term.typ))
}
return terms, nil
}
// A termSet holds the normalized set of terms for a given type.
//
// The name termSet is intentionally distinct from 'type set': a type set is
// all types that implement a type (and includes method restrictions), whereas
// a term set just represents the structural restrictions on a type.
type termSet struct {
complete bool
terms termlist
}
func indentf(depth int, format string, args ...interface{}) {
fmt.Fprintf(os.Stderr, strings.Repeat(".", depth)+format+"\n", args...)
}
func computeTermSetInternal(t types.Type, seen map[types.Type]*termSet, depth int) (res *termSet, err error) {
if t == nil {
panic("nil type")
}
if debug {
indentf(depth, "%s", t.String())
defer func() {
if err != nil {
indentf(depth, "=> %s", err)
} else {
indentf(depth, "=> %s", res.terms.String())
}
}()
}
const maxTermCount = 100
if tset, ok := seen[t]; ok {
if !tset.complete {
return nil, fmt.Errorf("cycle detected in the declaration of %s", t)
}
return tset, nil
}
// Mark the current type as seen to avoid infinite recursion.
tset := new(termSet)
defer func() {
tset.complete = true
}()
seen[t] = tset
switch u := t.Underlying().(type) {
case *types.Interface:
// The term set of an interface is the intersection of the term sets of its
// embedded types.
tset.terms = allTermlist
for i := 0; i < u.NumEmbeddeds(); i++ {
embedded := u.EmbeddedType(i)
if _, ok := embedded.Underlying().(*types.TypeParam); ok {
return nil, fmt.Errorf("invalid embedded type %T", embedded)
}
tset2, err := computeTermSetInternal(embedded, seen, depth+1)
if err != nil {
return nil, err
}
tset.terms = tset.terms.intersect(tset2.terms)
}
case *types.Union:
// The term set of a union is the union of term sets of its terms.
tset.terms = nil
for i := 0; i < u.Len(); i++ {
t := u.Term(i)
var terms termlist
switch t.Type().Underlying().(type) {
case *types.Interface:
tset2, err := computeTermSetInternal(t.Type(), seen, depth+1)
if err != nil {
return nil, err
}
terms = tset2.terms
case *types.TypeParam, *types.Union:
// A stand-alone type parameter or union is not permitted as union
// term.
return nil, fmt.Errorf("invalid union term %T", t)
default:
if t.Type() == types.Typ[types.Invalid] {
continue
}
terms = termlist{{t.Tilde(), t.Type()}}
}
tset.terms = tset.terms.union(terms)
if len(tset.terms) > maxTermCount {
return nil, fmt.Errorf("exceeded max term count %d", maxTermCount)
}
}
case *types.TypeParam:
panic("unreachable")
default:
// For all other types, the term set is just a single non-tilde term
// holding the type itself.
if u != types.Typ[types.Invalid] {
tset.terms = termlist{{false, t}}
}
}
return tset, nil
}
// under is a facade for the go/types internal function of the same name. It is
// used by typeterm.go.
func under(t types.Type) types.Type {
return t.Underlying()
}

View File

@@ -0,0 +1,163 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Code generated by copytermlist.go DO NOT EDIT.
package typeparams
import (
"bytes"
"go/types"
)
// A termlist represents the type set represented by the union
// t1 y2 ... tn of the type sets of the terms t1 to tn.
// A termlist is in normal form if all terms are disjoint.
// termlist operations don't require the operands to be in
// normal form.
type termlist []*term
// allTermlist represents the set of all types.
// It is in normal form.
var allTermlist = termlist{new(term)}
// String prints the termlist exactly (without normalization).
func (xl termlist) String() string {
if len(xl) == 0 {
return "∅"
}
var buf bytes.Buffer
for i, x := range xl {
if i > 0 {
buf.WriteString(" | ")
}
buf.WriteString(x.String())
}
return buf.String()
}
// isEmpty reports whether the termlist xl represents the empty set of types.
func (xl termlist) isEmpty() bool {
// If there's a non-nil term, the entire list is not empty.
// If the termlist is in normal form, this requires at most
// one iteration.
for _, x := range xl {
if x != nil {
return false
}
}
return true
}
// isAll reports whether the termlist xl represents the set of all types.
func (xl termlist) isAll() bool {
// If there's a 𝓤 term, the entire list is 𝓤.
// If the termlist is in normal form, this requires at most
// one iteration.
for _, x := range xl {
if x != nil && x.typ == nil {
return true
}
}
return false
}
// norm returns the normal form of xl.
func (xl termlist) norm() termlist {
// Quadratic algorithm, but good enough for now.
// TODO(gri) fix asymptotic performance
used := make([]bool, len(xl))
var rl termlist
for i, xi := range xl {
if xi == nil || used[i] {
continue
}
for j := i + 1; j < len(xl); j++ {
xj := xl[j]
if xj == nil || used[j] {
continue
}
if u1, u2 := xi.union(xj); u2 == nil {
// If we encounter a 𝓤 term, the entire list is 𝓤.
// Exit early.
// (Note that this is not just an optimization;
// if we continue, we may end up with a 𝓤 term
// and other terms and the result would not be
// in normal form.)
if u1.typ == nil {
return allTermlist
}
xi = u1
used[j] = true // xj is now unioned into xi - ignore it in future iterations
}
}
rl = append(rl, xi)
}
return rl
}
// union returns the union xl yl.
func (xl termlist) union(yl termlist) termlist {
return append(xl, yl...).norm()
}
// intersect returns the intersection xl ∩ yl.
func (xl termlist) intersect(yl termlist) termlist {
if xl.isEmpty() || yl.isEmpty() {
return nil
}
// Quadratic algorithm, but good enough for now.
// TODO(gri) fix asymptotic performance
var rl termlist
for _, x := range xl {
for _, y := range yl {
if r := x.intersect(y); r != nil {
rl = append(rl, r)
}
}
}
return rl.norm()
}
// equal reports whether xl and yl represent the same type set.
func (xl termlist) equal(yl termlist) bool {
// TODO(gri) this should be more efficient
return xl.subsetOf(yl) && yl.subsetOf(xl)
}
// includes reports whether t ∈ xl.
func (xl termlist) includes(t types.Type) bool {
for _, x := range xl {
if x.includes(t) {
return true
}
}
return false
}
// supersetOf reports whether y ⊆ xl.
func (xl termlist) supersetOf(y *term) bool {
for _, x := range xl {
if y.subsetOf(x) {
return true
}
}
return false
}
// subsetOf reports whether xl ⊆ yl.
func (xl termlist) subsetOf(yl termlist) bool {
if yl.isEmpty() {
return xl.isEmpty()
}
// each term x of xl must be a subset of yl
for _, x := range xl {
if !yl.supersetOf(x) {
return false // x is not a subset yl
}
}
return true
}

View File

@@ -0,0 +1,169 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Code generated by copytermlist.go DO NOT EDIT.
package typeparams
import "go/types"
// A term describes elementary type sets:
//
// ∅: (*term)(nil) == ∅ // set of no types (empty set)
// 𝓤: &term{} == 𝓤 // set of all types (𝓤niverse)
// T: &term{false, T} == {T} // set of type T
// ~t: &term{true, t} == {t' | under(t') == t} // set of types with underlying type t
type term struct {
tilde bool // valid if typ != nil
typ types.Type
}
func (x *term) String() string {
switch {
case x == nil:
return "∅"
case x.typ == nil:
return "𝓤"
case x.tilde:
return "~" + x.typ.String()
default:
return x.typ.String()
}
}
// equal reports whether x and y represent the same type set.
func (x *term) equal(y *term) bool {
// easy cases
switch {
case x == nil || y == nil:
return x == y
case x.typ == nil || y.typ == nil:
return x.typ == y.typ
}
// ∅ ⊂ x, y ⊂ 𝓤
return x.tilde == y.tilde && types.Identical(x.typ, y.typ)
}
// union returns the union x y: zero, one, or two non-nil terms.
func (x *term) union(y *term) (_, _ *term) {
// easy cases
switch {
case x == nil && y == nil:
return nil, nil // ∅ ∅ == ∅
case x == nil:
return y, nil // ∅ y == y
case y == nil:
return x, nil // x ∅ == x
case x.typ == nil:
return x, nil // 𝓤 y == 𝓤
case y.typ == nil:
return y, nil // x 𝓤 == 𝓤
}
// ∅ ⊂ x, y ⊂ 𝓤
if x.disjoint(y) {
return x, y // x y == (x, y) if x ∩ y == ∅
}
// x.typ == y.typ
// ~t ~t == ~t
// ~t T == ~t
// T ~t == ~t
// T T == T
if x.tilde || !y.tilde {
return x, nil
}
return y, nil
}
// intersect returns the intersection x ∩ y.
func (x *term) intersect(y *term) *term {
// easy cases
switch {
case x == nil || y == nil:
return nil // ∅ ∩ y == ∅ and ∩ ∅ == ∅
case x.typ == nil:
return y // 𝓤 ∩ y == y
case y.typ == nil:
return x // x ∩ 𝓤 == x
}
// ∅ ⊂ x, y ⊂ 𝓤
if x.disjoint(y) {
return nil // x ∩ y == ∅ if x ∩ y == ∅
}
// x.typ == y.typ
// ~t ∩ ~t == ~t
// ~t ∩ T == T
// T ∩ ~t == T
// T ∩ T == T
if !x.tilde || y.tilde {
return x
}
return y
}
// includes reports whether t ∈ x.
func (x *term) includes(t types.Type) bool {
// easy cases
switch {
case x == nil:
return false // t ∈ ∅ == false
case x.typ == nil:
return true // t ∈ 𝓤 == true
}
// ∅ ⊂ x ⊂ 𝓤
u := t
if x.tilde {
u = under(u)
}
return types.Identical(x.typ, u)
}
// subsetOf reports whether x ⊆ y.
func (x *term) subsetOf(y *term) bool {
// easy cases
switch {
case x == nil:
return true // ∅ ⊆ y == true
case y == nil:
return false // x ⊆ ∅ == false since x != ∅
case y.typ == nil:
return true // x ⊆ 𝓤 == true
case x.typ == nil:
return false // 𝓤 ⊆ y == false since y != 𝓤
}
// ∅ ⊂ x, y ⊂ 𝓤
if x.disjoint(y) {
return false // x ⊆ y == false if x ∩ y == ∅
}
// x.typ == y.typ
// ~t ⊆ ~t == true
// ~t ⊆ T == false
// T ⊆ ~t == true
// T ⊆ T == true
return !x.tilde || y.tilde
}
// disjoint reports whether x ∩ y == ∅.
// x.typ and y.typ must not be nil.
func (x *term) disjoint(y *term) bool {
if debug && (x.typ == nil || y.typ == nil) {
panic("invalid argument(s)")
}
ux := x.typ
if y.tilde {
ux = under(ux)
}
uy := y.typ
if x.tilde {
uy = under(uy)
}
return !types.Identical(ux, uy)
}