runtime: rm NewSlice (use b.unsafeSlice); llgo/ssa: Println

This commit is contained in:
xushiwei
2024-05-28 07:47:07 +08:00
parent 963d7958ea
commit 1c1da6433a
9 changed files with 224 additions and 180 deletions

View File

@@ -18,7 +18,6 @@ package ssa
import (
"fmt"
"go/token"
"go/types"
"log"
@@ -198,26 +197,6 @@ func (b Builder) Index(x, idx Expr, addr func(Expr) Expr) Expr {
return b.Load(buf)
}
// The Lookup instruction yields element Index of collection map X.
// Index is the appropriate key type.
//
// If CommaOk, the result is a 2-tuple of the value above and a
// boolean indicating the result of a map membership test for the key.
// The components of the tuple are accessed using Extract.
//
// Example printed form:
//
// t2 = t0[t1]
// t5 = t3[t4],ok
func (b Builder) Lookup(x, key Expr, commaOk bool) (ret Expr) {
if debugInstr {
log.Printf("Lookup %v, %v, %v\n", x.impl, key.impl, commaOk)
}
// TODO(xsw)
// panic("todo")
return
}
// The Slice instruction yields a slice of an existing string, slice
// or *array X between optional integer bounds Low and High.
//
@@ -297,6 +276,35 @@ func (b Builder) SliceLit(t Type, elts ...Expr) Expr {
return b.unsafeSlice(ptr, size, size)
}
// The MakeSlice instruction yields a slice of length Len backed by a
// newly allocated array of length Cap.
//
// Both Len and Cap must be non-nil Values of integer type.
//
// (Alloc(types.Array) followed by Slice will not suffice because
// Alloc can only create arrays of constant length.)
//
// Type() returns a (possibly named) *types.Slice.
//
// Example printed form:
//
// t1 = make []string 1:int t0
// t1 = make StringSlice 1:int t0
func (b Builder) MakeSlice(t Type, len, cap Expr) (ret Expr) {
if debugInstr {
log.Printf("MakeSlice %v, %v, %v\n", t.RawType(), len.impl, cap.impl)
}
prog := b.Prog
if cap.IsNil() {
cap = len
}
telem := prog.Index(t)
ptr := b.ArrayAlloc(telem, cap)
ret.impl = b.unsafeSlice(ptr, len.impl, cap.impl).impl
ret.Type = t
return
}
// -----------------------------------------------------------------------------
// The MakeMap instruction creates a new hash-table-based map object
@@ -318,35 +326,41 @@ func (b Builder) MakeMap(t Type, nReserve Expr) (ret Expr) {
return
}
// The MakeSlice instruction yields a slice of length Len backed by a
// newly allocated array of length Cap.
// The Lookup instruction yields element Index of collection map X.
// Index is the appropriate key type.
//
// Both Len and Cap must be non-nil Values of integer type.
//
// (Alloc(types.Array) followed by Slice will not suffice because
// Alloc can only create arrays of constant length.)
//
// Type() returns a (possibly named) *types.Slice.
// If CommaOk, the result is a 2-tuple of the value above and a
// boolean indicating the result of a map membership test for the key.
// The components of the tuple are accessed using Extract.
//
// Example printed form:
//
// t1 = make []string 1:int t0
// t1 = make StringSlice 1:int t0
func (b Builder) MakeSlice(t Type, len, cap Expr) (ret Expr) {
// t2 = t0[t1]
// t5 = t3[t4],ok
func (b Builder) Lookup(x, key Expr, commaOk bool) (ret Expr) {
if debugInstr {
log.Printf("MakeSlice %v, %v, %v\n", t.RawType(), len.impl, cap.impl)
log.Printf("Lookup %v, %v, %v\n", x.impl, key.impl, commaOk)
}
pkg := b.Pkg
prog := b.Prog
if cap.IsNil() {
cap = len
}
elemSize := SizeOf(prog, prog.Index(t))
size := b.BinOp(token.MUL, cap, elemSize)
ptr := b.InlineCall(pkg.rtFunc("AllocZ"), size)
ret.impl = b.InlineCall(pkg.rtFunc("NewSlice"), ptr, len, cap).impl
ret.Type = t
// TODO(xsw)
// panic("todo")
return
}
// The MapUpdate instruction updates the association of Map[Key] to
// Value.
//
// Pos() returns the ast.KeyValueExpr.Colon or ast.IndexExpr.Lbrack,
// if explicit in the source.
//
// Example printed form:
//
// t0[t1] = t2
func (b Builder) MapUpdate(m, k, v Expr) {
if debugInstr {
log.Printf("MapUpdate %v[%v] = %v\n", m.impl, k.impl, v.impl)
}
// TODO(xsw)
// panic("todo")
}
// -----------------------------------------------------------------------------

View File

@@ -500,37 +500,6 @@ func llvmFields(vals []Expr, t *types.Struct, b Builder) (ret []llvm.Value) {
return
}
func llvmPredBlocks(preds []BasicBlock) []llvm.BasicBlock {
ret := make([]llvm.BasicBlock, len(preds))
for i, v := range preds {
ret[i] = v.last
}
return ret
}
// -----------------------------------------------------------------------------
// Phi represents a phi node.
type Phi struct {
Expr
}
// AddIncoming adds incoming values to a phi node.
func (p Phi) AddIncoming(b Builder, preds []BasicBlock, f func(i int, blk BasicBlock) Expr) {
bs := llvmPredBlocks(preds)
vals := make([]llvm.Value, len(preds))
for iblk, blk := range preds {
vals[iblk] = f(iblk, blk).impl
}
p.impl.AddIncoming(vals, bs)
}
// Phi returns a phi node.
func (b Builder) Phi(t Type) Phi {
phi := llvm.CreatePHI(b.impl, t.ll)
return Phi{Expr{phi, t}}
}
// -----------------------------------------------------------------------------
// Advance returns the pointer ptr advanced by offset.
@@ -660,9 +629,6 @@ func (b Builder) Alloc(elem Type, heap bool) (ret Expr) {
// AllocU allocates uninitialized space for n*sizeof(elem) bytes.
func (b Builder) AllocU(elem Type, n ...int64) (ret Expr) {
if debugInstr {
log.Printf("AllocU %v, %v\n", elem.raw.Type, n)
}
prog := b.Prog
size := SizeOf(prog, elem, n...)
ret = b.InlineCall(b.Pkg.rtFunc("AllocU"), size)
@@ -670,6 +636,11 @@ func (b Builder) AllocU(elem Type, n ...int64) (ret Expr) {
return
}
// AllocZ allocates zero initialized space for n bytes.
func (b Builder) AllocZ(n Expr) (ret Expr) {
return b.InlineCall(b.Pkg.rtFunc("AllocZ"), n)
}
// Alloca allocates uninitialized space for n bytes.
func (b Builder) Alloca(n Expr) (ret Expr) {
if debugInstr {
@@ -682,6 +653,17 @@ func (b Builder) Alloca(n Expr) (ret Expr) {
return
}
// AllocaCStr allocates space for copy it from a Go string.
func (b Builder) AllocaCStr(gostr Expr) (ret Expr) {
if debugInstr {
log.Printf("AllocaCStr %v\n", gostr.impl)
}
n := b.StringLen(gostr)
n1 := b.BinOp(token.ADD, n, b.Prog.Val(1))
cstr := b.Alloca(n1)
return b.InlineCall(b.Pkg.rtFunc("CStrCopy"), cstr, gostr)
}
/*
// ArrayAlloca reserves space for an array of n elements of type telem.
func (b Builder) ArrayAlloca(telem Type, n Expr) (ret Expr) {
@@ -694,15 +676,14 @@ func (b Builder) ArrayAlloca(telem Type, n Expr) (ret Expr) {
}
*/
// AllocaCStr allocates space for copy it from a Go string.
func (b Builder) AllocaCStr(gostr Expr) (ret Expr) {
if debugInstr {
log.Printf("AllocaCStr %v\n", gostr.impl)
}
n := b.StringLen(gostr)
n1 := b.BinOp(token.ADD, n, b.Prog.Val(1))
cstr := b.Alloca(n1)
return b.InlineCall(b.Pkg.rtFunc("CStrCopy"), cstr, gostr)
// ArrayAlloc allocates zero initialized space for an array of n elements of type telem.
func (b Builder) ArrayAlloc(telem Type, n Expr) (ret Expr) {
prog := b.Prog
elemSize := SizeOf(prog, telem)
size := b.BinOp(token.MUL, n, elemSize)
ret.impl = b.AllocZ(size).impl
ret.Type = prog.Pointer(telem)
return
}
// -----------------------------------------------------------------------------
@@ -1047,55 +1028,7 @@ func (b Builder) BuiltinCall(fn string, args ...Expr) (ret Expr) {
}
}
case "print", "println":
ln := fn == "println"
prog := b.Prog
ret.Type = prog.Void()
for i, arg := range args {
if ln && i > 0 {
b.InlineCall(b.Pkg.rtFunc("PrintByte"), prog.IntVal(' ', prog.Byte()))
}
var fn string
typ := arg.Type
switch arg.kind {
case vkBool:
fn = "PrintBool"
case vkSigned:
fn = "PrintInt"
typ = prog.Int64()
case vkUnsigned:
fn = "PrintUint"
typ = prog.Uint64()
case vkFloat:
fn = "PrintFloat"
typ = prog.Float64()
case vkSlice:
fn = "PrintSlice"
case vkClosure:
arg = b.Field(arg, 0)
fallthrough
case vkPtr, vkFuncPtr, vkFuncDecl:
fn = "PrintPointer"
typ = prog.VoidPtr()
case vkString:
fn = "PrintString"
case vkEface:
fn = "PrintEface"
case vkIface:
fn = "PrintIface"
// case vkComplex:
// fn = "PrintComplex"
default:
panic(fmt.Errorf("illegal types for operand: print %v", arg.RawType()))
}
if typ != arg.Type {
arg = b.Convert(typ, arg)
}
b.InlineCall(b.Pkg.rtFunc(fn), arg)
}
if ln {
b.InlineCall(b.Pkg.rtFunc("PrintByte"), prog.IntVal('\n', prog.Byte()))
}
return
return b.PrintEx(fn == "println", args...)
case "copy":
if len(args) == 2 {
dst := args[0]
@@ -1120,4 +1053,61 @@ func (b Builder) BuiltinCall(fn string, args ...Expr) (ret Expr) {
panic("todo: " + fn)
}
// Println prints the arguments to stderr, followed by a newline.
func (b Builder) Println(args ...Expr) (ret Expr) {
return b.PrintEx(true, args...)
}
// PrintEx prints the arguments to stderr.
func (b Builder) PrintEx(ln bool, args ...Expr) (ret Expr) {
prog := b.Prog
ret.Type = prog.Void()
for i, arg := range args {
if ln && i > 0 {
b.InlineCall(b.Pkg.rtFunc("PrintByte"), prog.IntVal(' ', prog.Byte()))
}
var fn string
typ := arg.Type
switch arg.kind {
case vkBool:
fn = "PrintBool"
case vkSigned:
fn = "PrintInt"
typ = prog.Int64()
case vkUnsigned:
fn = "PrintUint"
typ = prog.Uint64()
case vkFloat:
fn = "PrintFloat"
typ = prog.Float64()
case vkSlice:
fn = "PrintSlice"
case vkClosure:
arg = b.Field(arg, 0)
fallthrough
case vkPtr, vkFuncPtr, vkFuncDecl:
fn = "PrintPointer"
typ = prog.VoidPtr()
case vkString:
fn = "PrintString"
case vkEface:
fn = "PrintEface"
case vkIface:
fn = "PrintIface"
// case vkComplex:
// fn = "PrintComplex"
default:
panic(fmt.Errorf("illegal types for operand: print %v", arg.RawType()))
}
if typ != arg.Type {
arg = b.Convert(typ, arg)
}
b.InlineCall(b.Pkg.rtFunc(fn), arg)
}
if ln {
b.InlineCall(b.Pkg.rtFunc("PrintByte"), prog.IntVal('\n', prog.Byte()))
}
return
}
// -----------------------------------------------------------------------------

View File

@@ -287,7 +287,8 @@ func (b Builder) Imethod(intf Expr, method *types.Func) Expr {
impl := intf.impl
itab := Expr{b.faceItab(impl), prog.VoidPtrPtr()}
pfn := b.Advance(itab, prog.IntVal(uint64(i+3), prog.Int()))
return b.aggregateValue(tclosure, b.Load(pfn).impl, b.faceData(impl))
fn := b.Load(pfn)
return b.aggregateValue(tclosure, fn.impl, b.faceData(impl))
}
// -----------------------------------------------------------------------------

View File

@@ -206,21 +206,35 @@ func (b Builder) If(cond Expr, thenb, elseb BasicBlock) {
b.impl.CreateCondBr(cond.impl, thenb.first, elseb.first)
}
// The MapUpdate instruction updates the association of Map[Key] to
// Value.
//
// Pos() returns the ast.KeyValueExpr.Colon or ast.IndexExpr.Lbrack,
// if explicit in the source.
//
// Example printed form:
//
// t0[t1] = t2
func (b Builder) MapUpdate(m, k, v Expr) {
if debugInstr {
log.Printf("MapUpdate %v[%v] = %v\n", m.impl, k.impl, v.impl)
// -----------------------------------------------------------------------------
// Phi represents a phi node.
type Phi struct {
Expr
}
// AddIncoming adds incoming values to a phi node.
func (p Phi) AddIncoming(b Builder, preds []BasicBlock, f func(i int, blk BasicBlock) Expr) {
bs := llvmPredBlocks(preds)
vals := make([]llvm.Value, len(preds))
for iblk, blk := range preds {
vals[iblk] = f(iblk, blk).impl
}
// TODO(xsw)
// panic("todo")
p.impl.AddIncoming(vals, bs)
}
func llvmPredBlocks(preds []BasicBlock) []llvm.BasicBlock {
ret := make([]llvm.BasicBlock, len(preds))
for i, v := range preds {
ret[i] = v.last
}
return ret
}
// Phi returns a phi node.
func (b Builder) Phi(t Type) Phi {
phi := llvm.CreatePHI(b.impl, t.ll)
return Phi{Expr{phi, t}}
}
// -----------------------------------------------------------------------------