add Future.Then
This commit is contained in:
393
x/async/README.md
Normal file
393
x/async/README.md
Normal file
@@ -0,0 +1,393 @@
|
||||
# Async I/O Design
|
||||
|
||||
## Async functions in different languages
|
||||
|
||||
### JavaScript
|
||||
|
||||
- [Async/Await](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function)
|
||||
|
||||
Prototype:
|
||||
|
||||
```javascript
|
||||
async function name(param0) {
|
||||
statements;
|
||||
}
|
||||
async function name(param0, param1) {
|
||||
statements;
|
||||
}
|
||||
async function name(param0, param1, /* …, */ paramN) {
|
||||
statements;
|
||||
}
|
||||
```
|
||||
|
||||
Example:
|
||||
|
||||
```typescript
|
||||
async function resolveAfter1Second(): Promise<string> {
|
||||
return new Promise((resolve) => {
|
||||
setTimeout(() => {
|
||||
resolve("Resolved after 1 second");
|
||||
}, 1000);
|
||||
});
|
||||
}
|
||||
|
||||
async function asyncCall(): Promise<string> {
|
||||
const result = await resolveAfter1Second();
|
||||
return `AsyncCall: ${result}`;
|
||||
}
|
||||
|
||||
function asyncCall2(): Promise<string> {
|
||||
return resolveAfter1Second();
|
||||
}
|
||||
|
||||
function asyncCall3(): void {
|
||||
resolveAfter1Second().then((result) => {
|
||||
console.log(`AsyncCall3: ${result}`);
|
||||
});
|
||||
}
|
||||
|
||||
async function main() {
|
||||
console.log("Starting AsyncCall");
|
||||
const result1 = await asyncCall();
|
||||
console.log(result1);
|
||||
|
||||
console.log("Starting AsyncCall2");
|
||||
const result2 = await asyncCall2();
|
||||
console.log(result2);
|
||||
|
||||
console.log("Starting AsyncCall3");
|
||||
asyncCall3();
|
||||
|
||||
// Wait for AsyncCall3 to complete
|
||||
await new Promise((resolve) => setTimeout(resolve, 1000));
|
||||
|
||||
console.log("Main function completed");
|
||||
}
|
||||
|
||||
main().catch(console.error);
|
||||
```
|
||||
|
||||
### Python
|
||||
|
||||
- [async def](https://docs.python.org/3/library/asyncio-task.html#coroutines)
|
||||
|
||||
Prototype:
|
||||
|
||||
```python
|
||||
async def name(param0):
|
||||
statements
|
||||
```
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
import asyncio
|
||||
|
||||
async def resolve_after_1_second() -> str:
|
||||
await asyncio.sleep(1)
|
||||
return "Resolved after 1 second"
|
||||
|
||||
async def async_call() -> str:
|
||||
result = await resolve_after_1_second()
|
||||
return f"AsyncCall: {result}"
|
||||
|
||||
def async_call2() -> asyncio.Task:
|
||||
return resolve_after_1_second()
|
||||
|
||||
def async_call3() -> None:
|
||||
asyncio.create_task(print_after_1_second())
|
||||
|
||||
async def print_after_1_second() -> None:
|
||||
result = await resolve_after_1_second()
|
||||
print(f"AsyncCall3: {result}")
|
||||
|
||||
async def main():
|
||||
print("Starting AsyncCall")
|
||||
result1 = await async_call()
|
||||
print(result1)
|
||||
|
||||
print("Starting AsyncCall2")
|
||||
result2 = await async_call2()
|
||||
print(result2)
|
||||
|
||||
print("Starting AsyncCall3")
|
||||
async_call3()
|
||||
|
||||
# Wait for AsyncCall3 to complete
|
||||
await asyncio.sleep(1)
|
||||
|
||||
print("Main function completed")
|
||||
|
||||
# Run the main coroutine
|
||||
asyncio.run(main())
|
||||
```
|
||||
|
||||
### Rust
|
||||
|
||||
- [async fn](https://doc.rust-lang.org/std/keyword.async.html)
|
||||
|
||||
Prototype:
|
||||
|
||||
```rust
|
||||
async fn name(param0: Type) -> ReturnType {
|
||||
statements
|
||||
}
|
||||
```
|
||||
|
||||
Example:
|
||||
|
||||
```rust
|
||||
use std::time::Duration;
|
||||
use tokio::time::sleep;
|
||||
use std::future::Future;
|
||||
|
||||
async fn resolve_after_1_second() -> String {
|
||||
sleep(Duration::from_secs(1)).await;
|
||||
"Resolved after 1 second".to_string()
|
||||
}
|
||||
|
||||
async fn async_call() -> String {
|
||||
let result = resolve_after_1_second().await;
|
||||
format!("AsyncCall: {}", result)
|
||||
}
|
||||
|
||||
fn async_call2() -> impl Future<Output = String> {
|
||||
resolve_after_1_second()
|
||||
}
|
||||
|
||||
fn async_call3() {
|
||||
tokio::spawn(async {
|
||||
let result = resolve_after_1_second().await;
|
||||
println!("AsyncCall3: {}", result);
|
||||
});
|
||||
}
|
||||
|
||||
#[tokio::main]
|
||||
async fn main() {
|
||||
println!("Starting AsyncCall");
|
||||
let result1 = async_call().await;
|
||||
println!("{}", result1);
|
||||
|
||||
println!("Starting AsyncCall2");
|
||||
let result2 = async_call2().await;
|
||||
println!("{}", result2);
|
||||
|
||||
println!("Starting AsyncCall3");
|
||||
async_call3();
|
||||
|
||||
// Wait for AsyncCall3 to complete
|
||||
sleep(Duration::from_secs(2)).await;
|
||||
|
||||
println!("Main function completed");
|
||||
}
|
||||
```
|
||||
|
||||
### C#
|
||||
|
||||
- [async](https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/)
|
||||
|
||||
Prototype:
|
||||
|
||||
```csharp
|
||||
async Task<ReturnType> NameAsync(Type param0)
|
||||
{
|
||||
statements;
|
||||
}
|
||||
```
|
||||
|
||||
Example:
|
||||
|
||||
```csharp
|
||||
using System;
|
||||
using System.Threading.Tasks;
|
||||
|
||||
class Program
|
||||
{
|
||||
static async Task<string> ResolveAfter1Second()
|
||||
{
|
||||
await Task.Delay(1000);
|
||||
return "Resolved after 1 second";
|
||||
}
|
||||
|
||||
static async Task<string> AsyncCall()
|
||||
{
|
||||
string result = await ResolveAfter1Second();
|
||||
return $"AsyncCall: {result}";
|
||||
}
|
||||
|
||||
static Task<string> AsyncCall2()
|
||||
{
|
||||
return ResolveAfter1Second();
|
||||
}
|
||||
|
||||
static void AsyncCall3()
|
||||
{
|
||||
_ = Task.Run(async () =>
|
||||
{
|
||||
string result = await ResolveAfter1Second();
|
||||
Console.WriteLine($"AsyncCall3: {result}");
|
||||
});
|
||||
}
|
||||
|
||||
static async Task Main()
|
||||
{
|
||||
Console.WriteLine("Starting AsyncCall");
|
||||
string result1 = await AsyncCall();
|
||||
Console.WriteLine(result1);
|
||||
|
||||
Console.WriteLine("Starting AsyncCall2");
|
||||
string result2 = await AsyncCall2();
|
||||
Console.WriteLine(result2);
|
||||
|
||||
Console.WriteLine("Starting AsyncCall3");
|
||||
AsyncCall3();
|
||||
|
||||
// Wait for AsyncCall3 to complete
|
||||
await Task.Delay(1000);
|
||||
|
||||
Console.WriteLine("Main method completed");
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### C++ 20 Coroutines
|
||||
|
||||
- [co_await](https://en.cppreference.com/w/cpp/language/coroutines)
|
||||
|
||||
Prototype:
|
||||
|
||||
```cpp
|
||||
TaskReturnType NameAsync(Type param0)
|
||||
{
|
||||
co_return co_await expression;
|
||||
}
|
||||
```
|
||||
|
||||
Example:
|
||||
|
||||
```cpp
|
||||
#include <cppcoro/task.hpp>
|
||||
#include <cppcoro/sync_wait.hpp>
|
||||
#include <cppcoro/when_all.hpp>
|
||||
#include <chrono>
|
||||
#include <iostream>
|
||||
#include <thread>
|
||||
|
||||
cppcoro::task<std::string> resolveAfter1Second() {
|
||||
co_await std::chrono::seconds(1);
|
||||
co_return "Resolved after 1 second";
|
||||
}
|
||||
|
||||
cppcoro::task<std::string> asyncCall() {
|
||||
auto result = co_await resolveAfter1Second();
|
||||
co_return "AsyncCall: " + result;
|
||||
}
|
||||
|
||||
cppcoro::task<std::string> asyncCall2() {
|
||||
return resolveAfter1Second();
|
||||
}
|
||||
|
||||
cppcoro::task<void> asyncCall3() {
|
||||
auto result = co_await resolveAfter1Second();
|
||||
std::cout << "AsyncCall3: " << result << std::endl;
|
||||
}
|
||||
|
||||
cppcoro::task<void> main() {
|
||||
std::cout << "Starting AsyncCall" << std::endl;
|
||||
auto result1 = co_await asyncCall();
|
||||
std::cout << result1 << std::endl;
|
||||
|
||||
std::cout << "Starting AsyncCall2" << std::endl;
|
||||
auto result2 = co_await asyncCall2();
|
||||
std::cout << result2 << std::endl;
|
||||
|
||||
std::cout << "Starting AsyncCall3" << std::endl;
|
||||
auto asyncCall3Task = asyncCall3();
|
||||
|
||||
// Wait for AsyncCall3 to complete
|
||||
co_await asyncCall3Task;
|
||||
|
||||
std::cout << "Main function completed" << std::endl;
|
||||
}
|
||||
|
||||
int main() {
|
||||
try {
|
||||
cppcoro::sync_wait(::main());
|
||||
} catch (const std::exception& e) {
|
||||
std::cerr << "Error: " << e.what() << std::endl;
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
```
|
||||
|
||||
## Common concepts
|
||||
|
||||
### Promise, Future, Task, and Coroutine
|
||||
|
||||
- **Promise**: An object that represents the eventual completion (or failure) of an asynchronous operation and its resulting value. It is used to produce a value that will be consumed by a `Future`.
|
||||
|
||||
- **Future**: An object that represents the result of an asynchronous operation. It is used to obtain the value produced by a `Promise`.
|
||||
|
||||
- **Task**: A unit of work that can be scheduled and executed asynchronously. It is a higher-level abstraction that combines a `Promise` and a `Future`.
|
||||
|
||||
- **Coroutine**: A special type of function that can suspend its execution and return control to the caller without losing its state. It can be resumed later, allowing for asynchronous programming.
|
||||
|
||||
### `async`, `await` and similar keywords
|
||||
|
||||
- **`async`**: A keyword used to define a function that returns a `Promise` or `Task`. It allows the function to pause its execution and resume later.
|
||||
|
||||
- **`await`**: A keyword used to pause the execution of an `async` function until a `Promise` or `Task` is resolved. It unwraps the value of the `Promise` or `Task` and allows the function to continue.
|
||||
|
||||
- **`co_return`**: A keyword used in C++ coroutines to return a value from a coroutine. It is similar to `return` but is used in coroutines to indicate that the coroutine has completed. It's similar to `return` in `async` functions in other languages that boxes the value into a `Promise` or `Task`.
|
||||
|
||||
`async/await` and similar constructs provide a more readable and synchronous-like way of writing asynchronous code, it hides the type of `Promise`/`Future`/`Task` from the user and allows them to focus on the logic of the code.
|
||||
|
||||
### Executing Multiple Async Operations Concurrently
|
||||
|
||||
To run multiple promises concurrently, JavaScript provides `Promise.all`, `Promise.allSettled` and `Promise.any`, Python provides `asyncio.gather`, Rust provides `tokio::try_join`, C# provides `Task.WhenAll`, and C++ provides `cppcoro::when_all`.
|
||||
|
||||
In some situations, you may want to get the first result of multiple async operations. JavaScript provides `Promise.race` to get the first result of multiple promises. Python provides `asyncio.wait` to get the first result of multiple coroutines. Rust provides `tokio::select!` to get the first result of multiple futures. C# provides `Task.WhenAny` to get the first result of multiple tasks. C++ provides `cppcoro::when_any` to get the first result of multiple tasks. Those functions are very simular to `select` in Go.
|
||||
|
||||
### Error Handling
|
||||
|
||||
`await` commonly unwraps the value of a `Promise` or `Task`, but it also propagates errors. If the `Promise` or `Task` is rejected or throws an error, the error will be thrown in the `async` function by the `await` keyword. You can use `try/catch` blocks to handle errors in `async` functions.
|
||||
|
||||
## Common patterns
|
||||
|
||||
- `async` keyword hides the types of `Promise`/`Future`/`Task` in the function signature in Python and Rust, but not in JavaScript, C#, and C++.
|
||||
- `await` keyword unwraps the value of a `Promise`/`Future`/`Task`.
|
||||
- `return` keyword boxes the value into a `Promise`/`Future`/`Task` if it's not already.
|
||||
|
||||
## Design considerations in LLGo
|
||||
|
||||
- Don't introduce `async`/`await` keywords to compatible with Go compiler (just compiling)
|
||||
- For performance reason don't implement async functions with goroutines
|
||||
- Avoid implementing `Promise` by using `chan` to avoid blocking the thread, but it can be wrapped as a `chan` to make it compatible `select` statement
|
||||
|
||||
## Design
|
||||
|
||||
Introduce `async.IO[T]` type to represent an asynchronous operation, `async.Future[T]` type to represent the result of an asynchronous operation. `async.IO[T]` can be `bind` to a function that accepts `T` as an argument to chain multiple asynchronous operations. `async.IO[T]` can be `await` to get the value of the asynchronous operation.
|
||||
|
||||
```go
|
||||
package async
|
||||
|
||||
type Future[T any] func(func(T))
|
||||
|
||||
func Await[T any](future Future[T]) T
|
||||
|
||||
func main() {
|
||||
hello := func() Future[string] {
|
||||
return func(resolve func(string)) {
|
||||
resolve("Hello, World!")
|
||||
}
|
||||
}
|
||||
|
||||
future := hello()
|
||||
future(func(value string) {
|
||||
println(value)
|
||||
})
|
||||
|
||||
println(Await(future))
|
||||
}
|
||||
```
|
||||
16
x/async/TODO.md
Normal file
16
x/async/TODO.md
Normal file
@@ -0,0 +1,16 @@
|
||||
讨论:
|
||||
|
||||
1. Future 用 interface 还是闭包:性能应该差不多,如果没有其他方法要暴露,感觉也没有换成 interface 的必要。
|
||||
2. 几个方法提供不同参数个数的版本还是用 tuple:如果编译器不支持可变泛型参数个数和特化,我倾向用 tuple 先简化实现,tuple 的开销应该也容易被编译器优化掉。多个方法让用户选择 Await2/Await3 这种也恶心。
|
||||
3. 是否 Cancellable,暂时不加进去,多一个 context,也不一定能快速稳定下来,可以后面根据实践再改。
|
||||
4. Executor 可能会变化,目前提供的 Run 是阻塞的,也可以把它做成异步。
|
||||
5. 尽量再隐藏一些辅助类型,比如 TupleN,可能之提供 tuple 的构造和返回多值。内部的 libuv 如果隐藏可能要暴露同等接口,先不动了
|
||||
6. 性能可能做个简单测试,但不是关键,只要别太差。未来可能会尽量减少 executor 的切换、尽量多并行
|
||||
7. 异常兼容性:目前没考虑,这个要在回调里处理可能困难,要么就在 await 上处理,可以往后放一下,毕竟 golang 主要是以 error 为主
|
||||
8. 可能先看一下如何在 go+里面集成,判断目前的设计实现是否合理
|
||||
9. 多封装一些库看看通用性和易用性,\_demo 里几个简单例子基本符合预期,还需要更多检验
|
||||
|
||||
TODO:
|
||||
|
||||
10. select 兼容 (可能把 Future 改为 interface 更合理?)
|
||||
11. Future 只会被执行一次
|
||||
@@ -32,7 +32,7 @@ func WriteFile(fileName string, content []byte) async.Future[error] {
|
||||
|
||||
func sleep(i int, d time.Duration) async.Future[int] {
|
||||
return async.Async(func(resolve func(int)) {
|
||||
timeout.Timeout(d)(func(async.Void) {
|
||||
timeout.Timeout(d).Then(func(async.Void) {
|
||||
resolve(i)
|
||||
})
|
||||
})
|
||||
@@ -70,7 +70,7 @@ func RunIO() {
|
||||
println("RunIO with BindIO")
|
||||
|
||||
async.Run(async.Async(func(resolve func(async.Void)) {
|
||||
ReadFile("all.go")(func(v tuple.Tuple2[[]byte, error]) {
|
||||
ReadFile("all.go").Then(func(v tuple.Tuple2[[]byte, error]) {
|
||||
content, err := v.Get()
|
||||
if err != nil {
|
||||
fmt.Printf("read err: %v\n", err)
|
||||
@@ -78,7 +78,7 @@ func RunIO() {
|
||||
return
|
||||
}
|
||||
fmt.Printf("read content: %s\n", content)
|
||||
WriteFile("2.out", content)(func(v error) {
|
||||
WriteFile("2.out", content).Then(func(v error) {
|
||||
err = v
|
||||
if err != nil {
|
||||
fmt.Printf("write err: %v\n", err)
|
||||
@@ -100,7 +100,7 @@ func RunAllAndRace() {
|
||||
println("Run All with Await")
|
||||
|
||||
async.Run(async.Async(func(resolve func(async.Void)) {
|
||||
async.All(sleep(1, ms200), sleep(2, ms100), sleep(3, ms300))(func(v []int) {
|
||||
async.All(sleep(1, ms200), sleep(2, ms100), sleep(3, ms300)).Then(func(v []int) {
|
||||
fmt.Printf("All: %v\n", v)
|
||||
resolve(async.Void{})
|
||||
})
|
||||
@@ -120,7 +120,7 @@ func RunAllAndRace() {
|
||||
println("Run All with BindIO")
|
||||
|
||||
async.Run(async.Async(func(resolve func(async.Void)) {
|
||||
async.All(sleep(1, ms200), sleep(2, ms100), sleep(3, ms300))(func(v []int) {
|
||||
async.All(sleep(1, ms200), sleep(2, ms100), sleep(3, ms300)).Then(func(v []int) {
|
||||
fmt.Printf("All: %v\n", v)
|
||||
resolve(async.Void{})
|
||||
})
|
||||
@@ -129,7 +129,7 @@ func RunAllAndRace() {
|
||||
println("Run Race with BindIO")
|
||||
|
||||
async.Run(async.Async(func(resolve func(async.Void)) {
|
||||
async.Race(sleep(1, ms200), sleep(2, ms100), sleep(3, ms300))(func(v int) {
|
||||
async.Race(sleep(1, ms200), sleep(2, ms100), sleep(3, ms300)).Then(func(v int) {
|
||||
fmt.Printf("Race: %v\n", v)
|
||||
resolve(async.Void{})
|
||||
})
|
||||
@@ -152,7 +152,7 @@ func RunTimeout() {
|
||||
|
||||
async.Run(async.Async(func(resolve func(async.Void)) {
|
||||
fmt.Printf("Start 100 ms timeout\n")
|
||||
timeout.Timeout(100 * time.Millisecond)(func(async.Void) {
|
||||
timeout.Timeout(100 * time.Millisecond).Then(func(async.Void) {
|
||||
fmt.Printf("timeout\n")
|
||||
resolve(async.Void{})
|
||||
})
|
||||
@@ -165,15 +165,15 @@ func RunSocket() {
|
||||
async.Run(async.Async(func(resolve func(async.Void)) {
|
||||
println("RunServer")
|
||||
|
||||
RunServer()(func(async.Void) {
|
||||
RunServer().Then(func(async.Void) {
|
||||
println("RunServer done")
|
||||
resolve(async.Void{})
|
||||
})
|
||||
|
||||
println("RunClient")
|
||||
|
||||
timeout.Timeout(100 * time.Millisecond)(func(async.Void) {
|
||||
RunClient()(func(async.Void) {
|
||||
timeout.Timeout(100 * time.Millisecond).Then(func(async.Void) {
|
||||
RunClient().Then(func(async.Void) {
|
||||
println("RunClient done")
|
||||
resolve(async.Void{})
|
||||
})
|
||||
@@ -184,7 +184,7 @@ func RunSocket() {
|
||||
func RunClient() async.Future[async.Void] {
|
||||
return async.Async(func(resolve func(async.Void)) {
|
||||
addr := "127.0.0.1:3927"
|
||||
socketio.Connect("tcp", addr)(func(v tuple.Tuple2[*socketio.Conn, error]) {
|
||||
socketio.Connect("tcp", addr).Then(func(v tuple.Tuple2[*socketio.Conn, error]) {
|
||||
client, err := v.Get()
|
||||
println("Connected", client, err)
|
||||
if err != nil {
|
||||
@@ -195,17 +195,17 @@ func RunClient() async.Future[async.Void] {
|
||||
loop = func(client *socketio.Conn) {
|
||||
counter++
|
||||
data := fmt.Sprintf("Hello %d", counter)
|
||||
client.Write([]byte(data))(func(err error) {
|
||||
client.Write([]byte(data)).Then(func(err error) {
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
client.Read()(func(v tuple.Tuple2[[]byte, error]) {
|
||||
client.Read().Then(func(v tuple.Tuple2[[]byte, error]) {
|
||||
data, err := v.Get()
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
println("Read from server:", string(data))
|
||||
timeout.Timeout(1 * time.Second)(func(async.Void) {
|
||||
timeout.Timeout(1 * time.Second).Then(func(async.Void) {
|
||||
loop(client)
|
||||
})
|
||||
})
|
||||
@@ -222,13 +222,13 @@ func RunServer() async.Future[async.Void] {
|
||||
println("Client connected", client, err)
|
||||
var loop func(client *socketio.Conn)
|
||||
loop = func(client *socketio.Conn) {
|
||||
client.Read()(func(v tuple.Tuple2[[]byte, error]) {
|
||||
client.Read().Then(func(v tuple.Tuple2[[]byte, error]) {
|
||||
data, err := v.Get()
|
||||
if err != nil {
|
||||
println("Read error", err)
|
||||
} else {
|
||||
println("Read from client:", string(data))
|
||||
client.Write(data)(func(err error) {
|
||||
client.Write(data).Then(func(err error) {
|
||||
if err != nil {
|
||||
println("Write error", err)
|
||||
} else {
|
||||
|
||||
@@ -24,6 +24,10 @@ type Void = [0]byte
|
||||
|
||||
type Future[T any] func(func(T))
|
||||
|
||||
func (f Future[T]) Then(cb func(T)) {
|
||||
f(cb)
|
||||
}
|
||||
|
||||
// Just for pure LLGo/Go, transpile to callback in Go+
|
||||
func Await[T1 any](future Future[T1]) T1 {
|
||||
return Run(future)
|
||||
|
||||
@@ -34,7 +34,7 @@ func Race[T1 any](futures ...Future[T1]) Future[T1] {
|
||||
ch := make(chan T1)
|
||||
for _, future := range futures {
|
||||
future := future
|
||||
future(func(v T1) {
|
||||
future.Then(func(v T1) {
|
||||
defer func() {
|
||||
// Avoid panic when the channel is closed.
|
||||
_ = recover()
|
||||
@@ -56,7 +56,7 @@ func All[T1 any](futures ...Future[T1]) Future[[]T1] {
|
||||
wg.Add(n)
|
||||
for i, future := range futures {
|
||||
i := i
|
||||
future(func(v T1) {
|
||||
future.Then(func(v T1) {
|
||||
results[i] = v
|
||||
wg.Done()
|
||||
})
|
||||
|
||||
@@ -53,7 +53,7 @@ func Race[T1 any](futures ...Future[T1]) Future[T1] {
|
||||
return Async(func(resolve func(T1)) {
|
||||
done := atomic.Bool{}
|
||||
for _, future := range futures {
|
||||
future(func(v T1) {
|
||||
future.Then(func(v T1) {
|
||||
if !done.Swap(true) {
|
||||
// Just resolve the first one.
|
||||
resolve(v)
|
||||
@@ -70,7 +70,7 @@ func All[T1 any](futures ...Future[T1]) Future[[]T1] {
|
||||
var done uint32
|
||||
for i, future := range futures {
|
||||
i := i
|
||||
future(func(v T1) {
|
||||
future.Then(func(v T1) {
|
||||
results[i] = v
|
||||
if atomic.AddUint32(&done, 1) == uint32(n) {
|
||||
// All done.
|
||||
|
||||
@@ -22,7 +22,7 @@ package async
|
||||
func Run[T any](future Future[T]) T {
|
||||
ch := make(chan T)
|
||||
go func() {
|
||||
future(func(v T) {
|
||||
future.Then(func(v T) {
|
||||
ch <- v
|
||||
})
|
||||
}()
|
||||
|
||||
@@ -59,7 +59,7 @@ func Run[T any](future Future[T]) T {
|
||||
exec := &Executor{loop}
|
||||
oldExec := setExec(exec)
|
||||
var ret T
|
||||
future(func(v T) {
|
||||
future.Then(func(v T) {
|
||||
ret = v
|
||||
})
|
||||
exec.Run()
|
||||
|
||||
Reference in New Issue
Block a user