add Future.Then

This commit is contained in:
Li Jie
2024-09-08 20:27:05 +08:00
parent cf53f3a347
commit 566d5ef96f
9 changed files with 56 additions and 32 deletions

View File

@@ -1,389 +0,0 @@
# Async I/O Design
## Async functions in different languages
### JavaScript
- [Async/Await](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function)
Prototype:
```javascript
async function name(param0) {
statements;
}
async function name(param0, param1) {
statements;
}
async function name(param0, param1, /* …, */ paramN) {
statements;
}
```
Example:
```typescript
async function resolveAfter1Second(): Promise<string> {
return new Promise((resolve) => {
setTimeout(() => {
resolve("Resolved after 1 second");
}, 1000);
});
}
async function asyncCall(): Promise<string> {
const result = await resolveAfter1Second();
return `AsyncCall: ${result}`;
}
function asyncCall2(): Promise<string> {
return resolveAfter1Second();
}
function asyncCall3(): void {
resolveAfter1Second().then((result) => {
console.log(`AsyncCall3: ${result}`);
});
}
async function main() {
console.log("Starting AsyncCall");
const result1 = await asyncCall();
console.log(result1);
console.log("Starting AsyncCall2");
const result2 = await asyncCall2();
console.log(result2);
console.log("Starting AsyncCall3");
asyncCall3();
// Wait for AsyncCall3 to complete
await new Promise((resolve) => setTimeout(resolve, 1000));
console.log("Main function completed");
}
main().catch(console.error);
```
### Python
- [async def](https://docs.python.org/3/library/asyncio-task.html#coroutines)
Prototype:
```python
async def name(param0):
statements
```
Example:
```python
import asyncio
async def resolve_after_1_second() -> str:
await asyncio.sleep(1)
return "Resolved after 1 second"
async def async_call() -> str:
result = await resolve_after_1_second()
return f"AsyncCall: {result}"
def async_call2() -> asyncio.Task:
return resolve_after_1_second()
def async_call3() -> None:
asyncio.create_task(print_after_1_second())
async def print_after_1_second() -> None:
result = await resolve_after_1_second()
print(f"AsyncCall3: {result}")
async def main():
print("Starting AsyncCall")
result1 = await async_call()
print(result1)
print("Starting AsyncCall2")
result2 = await async_call2()
print(result2)
print("Starting AsyncCall3")
async_call3()
# Wait for AsyncCall3 to complete
await asyncio.sleep(1)
print("Main function completed")
# Run the main coroutine
asyncio.run(main())
```
### Rust
- [async fn](https://doc.rust-lang.org/std/keyword.async.html)
Prototype:
```rust
async fn name(param0: Type) -> ReturnType {
statements
}
```
Example:
```rust
use std::time::Duration;
use tokio::time::sleep;
use std::future::Future;
async fn resolve_after_1_second() -> String {
sleep(Duration::from_secs(1)).await;
"Resolved after 1 second".to_string()
}
async fn async_call() -> String {
let result = resolve_after_1_second().await;
format!("AsyncCall: {}", result)
}
fn async_call2() -> impl Future<Output = String> {
resolve_after_1_second()
}
fn async_call3() {
tokio::spawn(async {
let result = resolve_after_1_second().await;
println!("AsyncCall3: {}", result);
});
}
#[tokio::main]
async fn main() {
println!("Starting AsyncCall");
let result1 = async_call().await;
println!("{}", result1);
println!("Starting AsyncCall2");
let result2 = async_call2().await;
println!("{}", result2);
println!("Starting AsyncCall3");
async_call3();
// Wait for AsyncCall3 to complete
sleep(Duration::from_secs(2)).await;
println!("Main function completed");
}
```
### C#
- [async](https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/)
Prototype:
```csharp
async Task<ReturnType> NameAsync(Type param0)
{
statements;
}
```
Example:
```csharp
using System;
using System.Threading.Tasks;
class Program
{
static async Task<string> ResolveAfter1Second()
{
await Task.Delay(1000);
return "Resolved after 1 second";
}
static async Task<string> AsyncCall()
{
string result = await ResolveAfter1Second();
return $"AsyncCall: {result}";
}
static Task<string> AsyncCall2()
{
return ResolveAfter1Second();
}
static void AsyncCall3()
{
_ = Task.Run(async () =>
{
string result = await ResolveAfter1Second();
Console.WriteLine($"AsyncCall3: {result}");
});
}
static async Task Main()
{
Console.WriteLine("Starting AsyncCall");
string result1 = await AsyncCall();
Console.WriteLine(result1);
Console.WriteLine("Starting AsyncCall2");
string result2 = await AsyncCall2();
Console.WriteLine(result2);
Console.WriteLine("Starting AsyncCall3");
AsyncCall3();
// Wait for AsyncCall3 to complete
await Task.Delay(1000);
Console.WriteLine("Main method completed");
}
}
```
### C++ 20 Coroutines
- [co_await](https://en.cppreference.com/w/cpp/language/coroutines)
Prototype:
```cpp
TaskReturnType NameAsync(Type param0)
{
co_return co_await expression;
}
```
Example:
```cpp
#include <cppcoro/task.hpp>
#include <cppcoro/sync_wait.hpp>
#include <cppcoro/when_all.hpp>
#include <chrono>
#include <iostream>
#include <thread>
cppcoro::task<std::string> resolveAfter1Second() {
co_await std::chrono::seconds(1);
co_return "Resolved after 1 second";
}
cppcoro::task<std::string> asyncCall() {
auto result = co_await resolveAfter1Second();
co_return "AsyncCall: " + result;
}
cppcoro::task<std::string> asyncCall2() {
return resolveAfter1Second();
}
cppcoro::task<void> asyncCall3() {
auto result = co_await resolveAfter1Second();
std::cout << "AsyncCall3: " << result << std::endl;
}
cppcoro::task<void> main() {
std::cout << "Starting AsyncCall" << std::endl;
auto result1 = co_await asyncCall();
std::cout << result1 << std::endl;
std::cout << "Starting AsyncCall2" << std::endl;
auto result2 = co_await asyncCall2();
std::cout << result2 << std::endl;
std::cout << "Starting AsyncCall3" << std::endl;
auto asyncCall3Task = asyncCall3();
// Wait for AsyncCall3 to complete
co_await asyncCall3Task;
std::cout << "Main function completed" << std::endl;
}
int main() {
try {
cppcoro::sync_wait(::main());
} catch (const std::exception& e) {
std::cerr << "Error: " << e.what() << std::endl;
return 1;
}
return 0;
}
```
## Common concepts
### Promise, Future, Task, and Coroutine
- **Promise**: An object that represents the eventual completion (or failure) of an asynchronous operation and its resulting value. It is used to produce a value that will be consumed by a `Future`.
- **Future**: An object that represents the result of an asynchronous operation. It is used to obtain the value produced by a `Promise`.
- **Task**: A unit of work that can be scheduled and executed asynchronously. It is a higher-level abstraction that combines a `Promise` and a `Future`.
- **Coroutine**: A special type of function that can suspend its execution and return control to the caller without losing its state. It can be resumed later, allowing for asynchronous programming.
### `async`, `await` and similar keywords
- **`async`**: A keyword used to define a function that returns a `Promise` or `Task`. It allows the function to pause its execution and resume later.
- **`await`**: A keyword used to pause the execution of an `async` function until a `Promise` or `Task` is resolved. It unwraps the value of the `Promise` or `Task` and allows the function to continue.
- **`co_return`**: A keyword used in C++ coroutines to return a value from a coroutine. It is similar to `return` but is used in coroutines to indicate that the coroutine has completed. It's similar to `return` in `async` functions in other languages that boxes the value into a `Promise` or `Task`.
`async/await` and similar constructs provide a more readable and synchronous-like way of writing asynchronous code, it hides the type of `Promise`/`Future`/`Task` from the user and allows them to focus on the logic of the code.
### Executing Multiple Async Operations Concurrently
To run multiple promises concurrently, JavaScript provides `Promise.all`, `Promise.allSettled` and `Promise.any`, Python provides `asyncio.gather`, Rust provides `tokio::try_join`, C# provides `Task.WhenAll`, and C++ provides `cppcoro::when_all`.
In some situations, you may want to get the first result of multiple async operations. JavaScript provides `Promise.race` to get the first result of multiple promises. Python provides `asyncio.wait` to get the first result of multiple coroutines. Rust provides `tokio::select!` to get the first result of multiple futures. C# provides `Task.WhenAny` to get the first result of multiple tasks. C++ provides `cppcoro::when_any` to get the first result of multiple tasks. Those functions are very simular to `select` in Go.
### Error Handling
`await` commonly unwraps the value of a `Promise` or `Task`, but it also propagates errors. If the `Promise` or `Task` is rejected or throws an error, the error will be thrown in the `async` function by the `await` keyword. You can use `try/catch` blocks to handle errors in `async` functions.
## Common patterns
- `async` keyword hides the types of `Promise`/`Future`/`Task` in the function signature in Python and Rust, but not in JavaScript, C#, and C++.
- `await` keyword unwraps the value of a `Promise`/`Future`/`Task`.
- `return` keyword boxes the value into a `Promise`/`Future`/`Task` if it's not already.
## Design considerations in LLGo
- Don't introduce `async`/`await` keywords to compatible with Go compiler (just compiling)
- For performance reason don't implement async functions with goroutines
- Avoid implementing `Promise` by using `chan` to avoid blocking the thread, but it can be wrapped as a `chan` to make it compatible `select` statement
## Design
Introduce `async.IO[T]` type to represent an asynchronous operation, `async.Future[T]` type to represent the result of an asynchronous operation. `async.IO[T]` can be `bind` to a function that accepts `T` as an argument to chain multiple asynchronous operations. `async.IO[T]` can be `await` to get the value of the asynchronous operation.
```go
package async
type Future[T any] func() T
type IO[T any] func() Future[T]
func main() {
io := func() Future[string] {
return func() string {
return "Hello, World!"
}
}
future := io()
value := future()
println(value)
}
```

View File

@@ -104,7 +104,7 @@ func Listen(protocol, bindAddr string, listenCb func(client *Conn, err error)) {
listenCb(nil, err)
return
}
parseAddr(bindAddr)(func(v tuple.Tuple2[*net.SockAddr, error]) {
parseAddr(bindAddr).Then(func(v tuple.Tuple2[*net.SockAddr, error]) {
addr, err := v.Get()
if err != nil {
listenCb(nil, err)
@@ -167,7 +167,7 @@ func (l *Listener) accept() (client *Conn, err error) {
func Connect(network, addr string) async.Future[tuple.Tuple2[*Conn, error]] {
return async.Async(func(resolve func(tuple.Tuple2[*Conn, error])) {
parseAddr(addr)(func(v tuple.Tuple2[*net.SockAddr, error]) {
parseAddr(addr).Then(func(v tuple.Tuple2[*net.SockAddr, error]) {
addr, err := v.Get()
if err != nil {
resolve(tuple.T2[*Conn, error]((*Conn)(nil), err))