merge Field/Extract; prog.Tuple/Zero; TypeAssert refactor

This commit is contained in:
xushiwei
2024-05-23 01:10:13 +08:00
parent 6442ab2f20
commit a4c4324ba3
5 changed files with 174 additions and 68 deletions

View File

@@ -93,6 +93,40 @@ func phisExpr(t Type, phis []llvm.Value) Expr {
// -----------------------------------------------------------------------------
func (p Program) Zero(t Type) Expr {
var ret llvm.Value
switch u := t.raw.Type.Underlying().(type) {
case *types.Basic:
kind := u.Kind()
switch {
case kind >= types.Bool && kind <= types.Uintptr:
ret = llvm.ConstInt(p.rawType(u).ll, 0, false)
case kind == types.String:
ret = p.Zero(p.rtType("String")).impl
case kind == types.UnsafePointer:
ret = llvm.ConstPointerNull(p.tyVoidPtr())
case kind <= types.Float64:
ret = llvm.ConstFloat(p.Float64().ll, 0)
case kind == types.Float32:
ret = llvm.ConstFloat(p.Float32().ll, 0)
default:
panic("todo")
}
case *types.Pointer:
return Expr{llvm.ConstNull(t.ll), t}
case *types.Struct:
n := u.NumFields()
flds := make([]llvm.Value, n)
for i := 0; i < n; i++ {
flds[i] = p.Zero(p.rawType(u.Field(i).Type())).impl
}
ret = llvm.ConstStruct(flds, false)
default:
log.Panicln("todo:", u)
}
return Expr{ret, t}
}
// Null returns a null constant expression.
func (p Program) Null(t Type) Expr {
return Expr{llvm.ConstNull(t.ll), t}
@@ -125,12 +159,6 @@ func (p Program) FloatVal(v float64, t Type) Expr {
return Expr{ret, t}
}
func (p Program) ByteVal(v byte) Expr {
t := p.Byte()
ret := llvm.ConstInt(t.ll, uint64(v), false)
return Expr{ret, t}
}
// Val returns a constant expression.
func (p Program) Val(v interface{}) Expr {
switch v := v.(type) {
@@ -941,21 +969,6 @@ func (b Builder) Call(fn Expr, args ...Expr) (ret Expr) {
return
}
// The Extract instruction yields component Index of Tuple.
//
// This is used to access the results of instructions with multiple
// return values, such as Call, TypeAssert, Next, UnOp(ARROW) and
// IndexExpr(Map).
//
// Example printed form:
//
// t1 = extract t0 #1
func (b Builder) Extract(x Expr, index int) (ret Expr) {
ret.Type = b.Prog.toType(x.Type.raw.Type.(*types.Tuple).At(index).Type())
ret.impl = llvm.CreateExtractValue(b.impl, x.impl, index)
return
}
// A Builtin represents a specific use of a built-in function, e.g. len.
//
// Builtins are immutable values. Builtins do not have addresses.
@@ -1009,7 +1022,7 @@ func (b Builder) BuiltinCall(fn string, args ...Expr) (ret Expr) {
ret.Type = prog.Void()
for i, arg := range args {
if ln && i > 0 {
b.InlineCall(b.Pkg.rtFunc("PrintByte"), prog.ByteVal(' '))
b.InlineCall(b.Pkg.rtFunc("PrintByte"), prog.IntVal(' ', prog.Byte()))
}
var fn string
typ := arg.Type
@@ -1049,7 +1062,7 @@ func (b Builder) BuiltinCall(fn string, args ...Expr) (ret Expr) {
b.InlineCall(b.Pkg.rtFunc(fn), arg)
}
if ln {
b.InlineCall(b.Pkg.rtFunc("PrintByte"), prog.ByteVal('\n'))
b.InlineCall(b.Pkg.rtFunc("PrintByte"), prog.IntVal('\n', prog.Byte()))
}
return
case "copy":

View File

@@ -161,11 +161,13 @@ func (b Builder) makeIntfAlloc(tinter Type, rawIntf *types.Interface, typ Type,
func (b Builder) makeIntfByPtr(tinter Type, rawIntf *types.Interface, typ Type, vptr Expr) (ret Expr) {
if rawIntf.Empty() {
return Expr{b.unsafeEface(b.abiType(typ.raw.Type).impl, vptr.impl), tinter}
tabi := b.abiType(typ.raw.Type)
return Expr{b.unsafeEface(tabi.impl, vptr.impl), tinter}
}
panic("todo")
}
// TODO(xsw): remove MakeAnyIntptr, MakeAnyString
func (b Builder) makeIntfByIntptr(tinter Type, rawIntf *types.Interface, typ Type, x llvm.Value) (ret Expr) {
if rawIntf.Empty() {
tptr := b.Prog.Uintptr()
@@ -176,45 +178,7 @@ func (b Builder) makeIntfByIntptr(tinter Type, rawIntf *types.Interface, typ Typ
panic("todo")
}
// The TypeAssert instruction tests whether interface value X has type
// AssertedType.
//
// If !CommaOk, on success it returns v, the result of the conversion
// (defined below); on failure it panics.
//
// If CommaOk: on success it returns a pair (v, true) where v is the
// result of the conversion; on failure it returns (z, false) where z
// is AssertedType's zero value. The components of the pair must be
// accessed using the Extract instruction.
//
// If Underlying: tests whether interface value X has the underlying
// type AssertedType.
//
// If AssertedType is a concrete type, TypeAssert checks whether the
// dynamic type in interface X is equal to it, and if so, the result
// of the conversion is a copy of the value in the interface.
//
// If AssertedType is an interface, TypeAssert checks whether the
// dynamic type of the interface is assignable to it, and if so, the
// result of the conversion is a copy of the interface value X.
// If AssertedType is a superinterface of X.Type(), the operation will
// fail iff the operand is nil. (Contrast with ChangeInterface, which
// performs no nil-check.)
//
// Type() reflects the actual type of the result, possibly a
// 2-types.Tuple; AssertedType is the asserted type.
//
// Depending on the TypeAssert's purpose, Pos may return:
// - the ast.CallExpr.Lparen of an explicit T(e) conversion;
// - the ast.TypeAssertExpr.Lparen of an explicit e.(T) operation;
// - the ast.CaseClause.Case of a case of a type-switch statement;
// - the Ident(m).NamePos of an interface method value i.m
// (for which TypeAssert may be used to effect the nil check).
//
// Example printed form:
//
// t1 = typeassert t0.(int)
// t3 = typeassert,ok t2.(T)
/*
func (b Builder) TypeAssert(x Expr, assertedTyp Type, commaOk bool) (ret Expr) {
if debugInstr {
log.Printf("TypeAssert %v, %v, %v\n", x.impl, assertedTyp.raw.Type, commaOk)
@@ -277,10 +241,89 @@ func (b Builder) TypeAssert(x Expr, assertedTyp Type, commaOk bool) (ret Expr) {
fnName = "CheckI2String"
}
return b.InlineCall(pkg.rtFunc(fnName), x)
case vkStruct:
}
panic("todo")
}
*/
// The TypeAssert instruction tests whether interface value X has type
// AssertedType.
//
// If !CommaOk, on success it returns v, the result of the conversion
// (defined below); on failure it panics.
//
// If CommaOk: on success it returns a pair (v, true) where v is the
// result of the conversion; on failure it returns (z, false) where z
// is AssertedType's zero value. The components of the pair must be
// accessed using the Extract instruction.
//
// If Underlying: tests whether interface value X has the underlying
// type AssertedType.
//
// If AssertedType is a concrete type, TypeAssert checks whether the
// dynamic type in interface X is equal to it, and if so, the result
// of the conversion is a copy of the value in the interface.
//
// If AssertedType is an interface, TypeAssert checks whether the
// dynamic type of the interface is assignable to it, and if so, the
// result of the conversion is a copy of the interface value X.
// If AssertedType is a superinterface of X.Type(), the operation will
// fail iff the operand is nil. (Contrast with ChangeInterface, which
// performs no nil-check.)
//
// Type() reflects the actual type of the result, possibly a
// 2-types.Tuple; AssertedType is the asserted type.
//
// Depending on the TypeAssert's purpose, Pos may return:
// - the ast.CallExpr.Lparen of an explicit T(e) conversion;
// - the ast.TypeAssertExpr.Lparen of an explicit e.(T) operation;
// - the ast.CaseClause.Case of a case of a type-switch statement;
// - the Ident(m).NamePos of an interface method value i.m
// (for which TypeAssert may be used to effect the nil check).
//
// Example printed form:
//
// t1 = typeassert t0.(int)
// t3 = typeassert,ok t2.(T)
func (b Builder) TypeAssert(x Expr, assertedTyp Type, commaOk bool) Expr {
if debugInstr {
log.Printf("TypeAssert %v, %v, %v\n", x.impl, assertedTyp.raw.Type, commaOk)
}
tx := b.faceAbiType(x)
tabi := b.abiType(assertedTyp.raw.Type)
eq := b.BinOp(token.EQL, tx, tabi)
if commaOk {
/*
prog := b.Prog
t := prog.Tuple(assertedTyp, prog.Bool())
val := b.valFromData(assertedTyp, b.InterfaceData(x))
zero := prog.Zero(assertedTyp)
valTrue := aggregateValue(b.impl, t.ll, val.impl, prog.BoolVal(true).impl)
valFalse := aggregateValue(b.impl, t.ll, zero.impl, prog.BoolVal(false).impl)
return Expr{llvm.CreateSelect(b.impl, eq.impl, valTrue, valFalse), t}
*/
panic("todo")
}
blks := b.Func.MakeBlocks(2)
b.If(eq, blks[0], blks[1])
b.SetBlock(blks[1])
b.Panic(b.Str("type assertion failed"))
b.SetBlock(blks[0])
return b.valFromData(assertedTyp, b.InterfaceData(x))
}
func (b Builder) valFromData(t Type, data Expr) Expr {
switch u := t.raw.Type.Underlying().(type) {
case *types.Basic:
kind := u.Kind()
switch {
case kind >= types.Bool && kind <= types.Uintptr:
panic("todo")
}
}
_ = data
panic("todo")
}
// -----------------------------------------------------------------------------
@@ -293,4 +336,12 @@ func (b Builder) InterfaceData(x Expr) Expr {
return Expr{ptr, b.Prog.VoidPtr()}
}
func (b Builder) faceAbiType(x Expr) Expr {
if x.kind == vkIface {
panic("todo")
}
typ := llvm.CreateExtractValue(b.impl, x.impl, 0)
return Expr{typ, b.Prog.AbiTypePtr()}
}
// -----------------------------------------------------------------------------

View File

@@ -137,6 +137,7 @@ type aProgram struct {
intTy Type
uintTy Type
f64Ty Type
f32Ty Type
byteTy Type
i32Ty Type
u32Ty Type
@@ -293,6 +294,16 @@ func (p Program) NewPackage(name, pkgPath string) Package {
return ret
}
// Tuple returns a tuple type.
func (p Program) Tuple(typs ...Type) Type {
n := len(typs)
els := make([]*types.Var, n)
for i, t := range typs {
els[i] = types.NewParam(token.NoPos, nil, "", t.raw.Type)
}
return p.rawType(types.NewTuple(els...))
}
// Eface returns the empty interface type.
func (p Program) Eface() Type {
if p.efaceTy == nil {
@@ -418,6 +429,14 @@ func (p Program) Float64() Type {
return p.f64Ty
}
// Float32 returns float32 type.
func (p Program) Float32() Type {
if p.f32Ty == nil {
p.f32Ty = p.rawType(types.Typ[types.Float32])
}
return p.f32Ty
}
// Byte returns byte type.
func (p Program) Byte() Type {
if p.byteTy == nil {

View File

@@ -160,6 +160,22 @@ func (b Builder) Return(results ...Expr) {
}
}
// The Extract instruction yields component Index of Tuple.
//
// This is used to access the results of instructions with multiple
// return values, such as Call, TypeAssert, Next, UnOp(ARROW) and
// IndexExpr(Map).
//
// Example printed form:
//
// t1 = extract t0 #1
func (b Builder) Extract(x Expr, i int) (ret Expr) {
if debugInstr {
log.Printf("Extract %v, %d\n", x.impl, i)
}
return b.getField(x, i)
}
// Jump emits a jump instruction.
func (b Builder) Jump(jmpb BasicBlock) {
if b.Func != jmpb.fn {

View File

@@ -141,9 +141,14 @@ func (p Program) Index(typ Type) Type {
}
func (p Program) Field(typ Type, i int) Type {
tunder := typ.raw.Type.Underlying()
tfld := tunder.(*types.Struct).Field(i).Type()
return p.rawType(tfld)
var fld *types.Var
switch t := typ.raw.Type.(type) {
case *types.Tuple:
fld = t.At(i)
default:
fld = t.Underlying().(*types.Struct).Field(i)
}
return p.rawType(fld.Type())
}
func (p Program) rawType(raw types.Type) Type {
@@ -218,9 +223,11 @@ func (p Program) tyInt64() llvm.Type {
return p.int64Type
}
/*
func (p Program) toTuple(typ *types.Tuple) Type {
return &aType{p.toLLVMTuple(typ), rawType{typ}, vkTuple}
}
*/
func (p Program) toType(raw types.Type) Type {
typ := rawType{raw}
@@ -385,7 +392,7 @@ func (p Program) toNamed(raw *types.Named) Type {
switch t := raw.Underlying().(type) {
case *types.Struct:
name := NameOf(raw)
return &aType{p.toLLVMNamedStruct(name, t), rawType{raw}, vkInvalid}
return &aType{p.toLLVMNamedStruct(name, t), rawType{raw}, vkStruct}
default:
return p.rawType(t)
}