patch: internal/reflectlite; demo: sort

This commit is contained in:
xushiwei
2024-06-21 13:21:16 +08:00
parent 10a47cdbbb
commit e188925d2b
6 changed files with 1203 additions and 0 deletions

View File

@@ -8,4 +8,16 @@ func main() {
for _, v := range vals { for _, v := range vals {
println(v) println(v)
} }
texts := []string{"apple", "banana", "cherry", "date", "elderberry", "fig"}
sort.Slice(texts, func(i, j int) bool {
leni, lenj := len(texts[i]), len(texts[j])
if leni != lenj {
return leni < lenj
}
return texts[i] < texts[j]
})
for _, v := range texts {
println(v)
}
} }

View File

@@ -100,6 +100,44 @@ const (
KindMask = (1 << 5) - 1 KindMask = (1 << 5) - 1
) )
// String returns the name of k.
func (k Kind) String() string {
if int(k) < len(kindNames) {
return kindNames[k]
}
return kindNames[0]
}
var kindNames = []string{
Invalid: "invalid",
Bool: "bool",
Int: "int",
Int8: "int8",
Int16: "int16",
Int32: "int32",
Int64: "int64",
Uint: "uint",
Uint8: "uint8",
Uint16: "uint16",
Uint32: "uint32",
Uint64: "uint64",
Uintptr: "uintptr",
Float32: "float32",
Float64: "float64",
Complex64: "complex64",
Complex128: "complex128",
Array: "array",
Chan: "chan",
Func: "func",
Interface: "interface",
Map: "map",
Pointer: "ptr",
Slice: "slice",
String: "string",
Struct: "struct",
UnsafePointer: "unsafe.Pointer",
}
// TFlag is used by a Type to signal what extra type information is // TFlag is used by a Type to signal what extra type information is
// available in the memory directly following the Type value. // available in the memory directly following the Type value.
type TFlag uint8 type TFlag uint8

View File

@@ -0,0 +1,80 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package reflectlite
import (
"unsafe"
)
const (
goarchPtrSize = unsafe.Sizeof(uintptr(0))
)
// Swapper returns a function that swaps the elements in the provided
// slice.
//
// Swapper panics if the provided interface is not a slice.
func Swapper(slice any) func(i, j int) {
v := ValueOf(slice)
if v.Kind() != Slice {
panic(&ValueError{Method: "Swapper", Kind: v.Kind()})
}
// Fast path for slices of size 0 and 1. Nothing to swap.
switch v.Len() {
case 0:
return func(i, j int) { panic("reflect: slice index out of range") }
case 1:
return func(i, j int) {
if i != 0 || j != 0 {
panic("reflect: slice index out of range")
}
}
}
typ := v.Type().Elem().common()
size := typ.Size()
hasPtr := typ.PtrBytes != 0
// Some common & small cases, without using memmove:
if hasPtr {
if size == goarchPtrSize {
ps := *(*[]unsafe.Pointer)(v.ptr)
return func(i, j int) { ps[i], ps[j] = ps[j], ps[i] }
}
if typ.Kind() == String {
ss := *(*[]string)(v.ptr)
return func(i, j int) { ss[i], ss[j] = ss[j], ss[i] }
}
} else {
switch size {
case 8:
is := *(*[]int64)(v.ptr)
return func(i, j int) { is[i], is[j] = is[j], is[i] }
case 4:
is := *(*[]int32)(v.ptr)
return func(i, j int) { is[i], is[j] = is[j], is[i] }
case 2:
is := *(*[]int16)(v.ptr)
return func(i, j int) { is[i], is[j] = is[j], is[i] }
case 1:
is := *(*[]int8)(v.ptr)
return func(i, j int) { is[i], is[j] = is[j], is[i] }
}
}
s := (*unsafeheaderSlice)(v.ptr)
tmp := unsafe_New(typ) // swap scratch space
return func(i, j int) {
if uint(i) >= uint(s.Len) || uint(j) >= uint(s.Len) {
panic("reflect: slice index out of range")
}
val1 := arrayAt(s.Data, i, size, "i < s.Len")
val2 := arrayAt(s.Data, j, size, "j < s.Len")
typedmemmove(typ, tmp, val1)
typedmemmove(typ, val1, val2)
typedmemmove(typ, val2, tmp)
}
}

View File

@@ -0,0 +1,565 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package reflectlite implements lightweight version of reflect, not using
// any package except for "runtime", "unsafe", and "internal/abi"
package reflectlite
import (
"unsafe"
"github.com/goplus/llgo/internal/abi"
)
// Type is the representation of a Go type.
//
// Not all methods apply to all kinds of types. Restrictions,
// if any, are noted in the documentation for each method.
// Use the Kind method to find out the kind of type before
// calling kind-specific methods. Calling a method
// inappropriate to the kind of type causes a run-time panic.
//
// Type values are comparable, such as with the == operator,
// so they can be used as map keys.
// Two Type values are equal if they represent identical types.
type Type interface {
// Methods applicable to all types.
// Name returns the type's name within its package for a defined type.
// For other (non-defined) types it returns the empty string.
Name() string
// PkgPath returns a defined type's package path, that is, the import path
// that uniquely identifies the package, such as "encoding/base64".
// If the type was predeclared (string, error) or not defined (*T, struct{},
// []int, or A where A is an alias for a non-defined type), the package path
// will be the empty string.
PkgPath() string
// Size returns the number of bytes needed to store
// a value of the given type; it is analogous to unsafe.Sizeof.
Size() uintptr
// Kind returns the specific kind of this type.
Kind() Kind
// Implements reports whether the type implements the interface type u.
Implements(u Type) bool
// AssignableTo reports whether a value of the type is assignable to type u.
AssignableTo(u Type) bool
// Comparable reports whether values of this type are comparable.
Comparable() bool
// String returns a string representation of the type.
// The string representation may use shortened package names
// (e.g., base64 instead of "encoding/base64") and is not
// guaranteed to be unique among types. To test for type identity,
// compare the Types directly.
String() string
// Elem returns a type's element type.
// It panics if the type's Kind is not Ptr.
Elem() Type
common() *abi.Type
uncommon() *uncommonType
}
/*
* These data structures are known to the compiler (../../cmd/internal/reflectdata/reflect.go).
* A few are known to ../runtime/type.go to convey to debuggers.
* They are also known to ../runtime/type.go.
*/
// A Kind represents the specific kind of type that a Type represents.
// The zero Kind is not a valid kind.
type Kind = abi.Kind
const Ptr = abi.Pointer
const (
// Import-and-export these constants as necessary
Interface = abi.Interface
Slice = abi.Slice
String = abi.String
Struct = abi.Struct
)
type rtype struct {
*abi.Type
}
// uncommonType is present only for defined types or types with methods
// (if T is a defined type, the uncommonTypes for T and *T have methods).
// Using a pointer to this struct reduces the overall size required
// to describe a non-defined type with no methods.
type uncommonType = abi.UncommonType
// arrayType represents a fixed array type.
type arrayType = abi.ArrayType
// chanType represents a channel type.
type chanType = abi.ChanType
type funcType = abi.FuncType
type interfaceType = abi.InterfaceType
// mapType represents a map type.
type mapType struct {
rtype
Key *abi.Type // map key type
Elem *abi.Type // map element (value) type
Bucket *abi.Type // internal bucket structure
// function for hashing keys (ptr to key, seed) -> hash
Hasher func(unsafe.Pointer, uintptr) uintptr
KeySize uint8 // size of key slot
ValueSize uint8 // size of value slot
BucketSize uint16 // size of bucket
Flags uint32
}
// ptrType represents a pointer type.
type ptrType = abi.PtrType
// sliceType represents a slice type.
type sliceType = abi.SliceType
// structType represents a struct type.
type structType = abi.StructType
func (t rtype) uncommon() *uncommonType {
return t.Uncommon()
}
func (t rtype) String() string {
return t.Type.String()
}
func (t rtype) common() *abi.Type { return t.Type }
func (t rtype) exportedMethods() []abi.Method {
ut := t.uncommon()
if ut == nil {
return nil
}
return ut.ExportedMethods()
}
func (t rtype) NumMethod() int {
/*
tt := t.Type.InterfaceType()
if tt != nil {
return tt.NumMethod()
}
return len(t.exportedMethods())
*/
panic("todo")
}
func (t rtype) PkgPath() string {
/*
if t.TFlag&abi.TFlagNamed == 0 {
return ""
}
ut := t.uncommon()
if ut == nil {
return ""
}
return t.nameOff(ut.PkgPath).Name()
*/
panic("todo")
}
func (t rtype) Name() string {
/*
if !t.HasName() {
return ""
}
s := t.String()
i := len(s) - 1
sqBrackets := 0
for i >= 0 && (s[i] != '.' || sqBrackets != 0) {
switch s[i] {
case ']':
sqBrackets++
case '[':
sqBrackets--
}
i--
}
return s[i+1:]
*/
panic("todo")
}
func toRType(t *abi.Type) rtype {
return rtype{t}
}
func elem(t *abi.Type) *abi.Type {
et := t.Elem()
if et != nil {
return et
}
panic("reflect: Elem of invalid type " + toRType(t).String())
}
func (t rtype) Elem() Type {
return toType(elem(t.common()))
}
func (t rtype) In(i int) Type {
/*
tt := t.Type.FuncType()
if tt == nil {
panic("reflect: In of non-func type")
}
return toType(tt.InSlice()[i])
*/
panic("todo")
}
func (t rtype) Key() Type {
tt := t.Type.MapType()
if tt == nil {
panic("reflect: Key of non-map type")
}
return toType(tt.Key)
}
func (t rtype) Len() int {
tt := t.Type.ArrayType()
if tt == nil {
panic("reflect: Len of non-array type")
}
return int(tt.Len)
}
func (t rtype) NumField() int {
tt := t.Type.StructType()
if tt == nil {
panic("reflect: NumField of non-struct type")
}
return len(tt.Fields)
}
func (t rtype) NumIn() int {
/*
tt := t.Type.FuncType()
if tt == nil {
panic("reflect: NumIn of non-func type")
}
return int(tt.InCount)
*/
panic("todo")
}
func (t rtype) NumOut() int {
/*
tt := t.Type.FuncType()
if tt == nil {
panic("reflect: NumOut of non-func type")
}
return tt.NumOut()
*/
panic("todo")
}
func (t rtype) Out(i int) Type {
/*
tt := t.Type.FuncType()
if tt == nil {
panic("reflect: Out of non-func type")
}
return toType(tt.OutSlice()[i])
*/
panic("todo")
}
// add returns p+x.
//
// The whySafe string is ignored, so that the function still inlines
// as efficiently as p+x, but all call sites should use the string to
// record why the addition is safe, which is to say why the addition
// does not cause x to advance to the very end of p's allocation
// and therefore point incorrectly at the next block in memory.
func add(p unsafe.Pointer, x uintptr, whySafe string) unsafe.Pointer {
return unsafe.Pointer(uintptr(p) + x)
}
// TypeOf returns the reflection Type that represents the dynamic type of i.
// If i is a nil interface value, TypeOf returns nil.
func TypeOf(i any) Type {
eface := *(*emptyInterface)(unsafe.Pointer(&i))
return toType(eface.typ)
}
func (t rtype) Implements(u Type) bool {
if u == nil {
panic("reflect: nil type passed to Type.Implements")
}
if u.Kind() != Interface {
panic("reflect: non-interface type passed to Type.Implements")
}
return implements(u.common(), t.common())
}
func (t rtype) AssignableTo(u Type) bool {
if u == nil {
panic("reflect: nil type passed to Type.AssignableTo")
}
uu := u.common()
tt := t.common()
return directlyAssignable(uu, tt) || implements(uu, tt)
}
func (t rtype) Comparable() bool {
return t.Equal != nil
}
// implements reports whether the type V implements the interface type T.
func implements(T, V *abi.Type) bool {
/*
t := T.InterfaceType()
if t == nil {
return false
}
if len(t.Methods) == 0 {
return true
}
rT := toRType(T)
rV := toRType(V)
// The same algorithm applies in both cases, but the
// method tables for an interface type and a concrete type
// are different, so the code is duplicated.
// In both cases the algorithm is a linear scan over the two
// lists - T's methods and V's methods - simultaneously.
// Since method tables are stored in a unique sorted order
// (alphabetical, with no duplicate method names), the scan
// through V's methods must hit a match for each of T's
// methods along the way, or else V does not implement T.
// This lets us run the scan in overall linear time instead of
// the quadratic time a naive search would require.
// See also ../runtime/iface.go.
if V.Kind() == Interface {
v := (*interfaceType)(unsafe.Pointer(V))
i := 0
for j := 0; j < len(v.Methods); j++ {
tm := &t.Methods[i]
tmName := rT.nameOff(tm.Name)
vm := &v.Methods[j]
vmName := rV.nameOff(vm.Name)
if vmName.Name() == tmName.Name() && rV.typeOff(vm.Typ) == rT.typeOff(tm.Typ) {
if !tmName.IsExported() {
tmPkgPath := pkgPath(tmName)
if tmPkgPath == "" {
tmPkgPath = t.PkgPath.Name()
}
vmPkgPath := pkgPath(vmName)
if vmPkgPath == "" {
vmPkgPath = v.PkgPath.Name()
}
if tmPkgPath != vmPkgPath {
continue
}
}
if i++; i >= len(t.Methods) {
return true
}
}
}
return false
}
v := V.Uncommon()
if v == nil {
return false
}
i := 0
vmethods := v.Methods()
for j := 0; j < int(v.Mcount); j++ {
tm := &t.Methods[i]
tmName := rT.nameOff(tm.Name)
vm := vmethods[j]
vmName := rV.nameOff(vm.Name)
if vmName.Name() == tmName.Name() && rV.typeOff(vm.Mtyp) == rT.typeOff(tm.Typ) {
if !tmName.IsExported() {
tmPkgPath := pkgPath(tmName)
if tmPkgPath == "" {
tmPkgPath = t.PkgPath.Name()
}
vmPkgPath := pkgPath(vmName)
if vmPkgPath == "" {
vmPkgPath = rV.nameOff(v.PkgPath).Name()
}
if tmPkgPath != vmPkgPath {
continue
}
}
if i++; i >= len(t.Methods) {
return true
}
}
}
return false
*/
panic("todo")
}
// directlyAssignable reports whether a value x of type V can be directly
// assigned (using memmove) to a value of type T.
// https://golang.org/doc/go_spec.html#Assignability
// Ignoring the interface rules (implemented elsewhere)
// and the ideal constant rules (no ideal constants at run time).
func directlyAssignable(T, V *abi.Type) bool {
// x's type V is identical to T?
if T == V {
return true
}
// Otherwise at least one of T and V must not be defined
// and they must have the same kind.
if T.HasName() && V.HasName() || T.Kind() != V.Kind() {
return false
}
// x's type T and V must have identical underlying types.
return haveIdenticalUnderlyingType(T, V, true)
}
func haveIdenticalType(T, V *abi.Type, cmpTags bool) bool {
if cmpTags {
return T == V
}
if toRType(T).Name() != toRType(V).Name() || T.Kind() != V.Kind() {
return false
}
return haveIdenticalUnderlyingType(T, V, false)
}
func haveIdenticalUnderlyingType(T, V *abi.Type, cmpTags bool) bool {
if T == V {
return true
}
kind := T.Kind()
if kind != V.Kind() {
return false
}
// Non-composite types of equal kind have same underlying type
// (the predefined instance of the type).
if abi.Bool <= kind && kind <= abi.Complex128 || kind == abi.String || kind == abi.UnsafePointer {
return true
}
/*
// Composite types.
switch kind {
case abi.Array:
return T.Len() == V.Len() && haveIdenticalType(T.Elem(), V.Elem(), cmpTags)
case abi.Chan:
// Special case:
// x is a bidirectional channel value, T is a channel type,
// and x's type V and T have identical element types.
if V.ChanDir() == abi.BothDir && haveIdenticalType(T.Elem(), V.Elem(), cmpTags) {
return true
}
// Otherwise continue test for identical underlying type.
return V.ChanDir() == T.ChanDir() && haveIdenticalType(T.Elem(), V.Elem(), cmpTags)
case abi.Func:
t := (*funcType)(unsafe.Pointer(T))
v := (*funcType)(unsafe.Pointer(V))
if t.OutCount != v.OutCount || t.InCount != v.InCount {
return false
}
for i := 0; i < t.NumIn(); i++ {
if !haveIdenticalType(t.In(i), v.In(i), cmpTags) {
return false
}
}
for i := 0; i < t.NumOut(); i++ {
if !haveIdenticalType(t.Out(i), v.Out(i), cmpTags) {
return false
}
}
return true
case Interface:
t := (*interfaceType)(unsafe.Pointer(T))
v := (*interfaceType)(unsafe.Pointer(V))
if len(t.Methods) == 0 && len(v.Methods) == 0 {
return true
}
// Might have the same methods but still
// need a run time conversion.
return false
case abi.Map:
return haveIdenticalType(T.Key(), V.Key(), cmpTags) && haveIdenticalType(T.Elem(), V.Elem(), cmpTags)
case Ptr, abi.Slice:
return haveIdenticalType(T.Elem(), V.Elem(), cmpTags)
case abi.Struct:
t := (*structType)(unsafe.Pointer(T))
v := (*structType)(unsafe.Pointer(V))
if len(t.Fields) != len(v.Fields) {
return false
}
if t.PkgPath.Name() != v.PkgPath.Name() {
return false
}
for i := range t.Fields {
tf := &t.Fields[i]
vf := &v.Fields[i]
if tf.Name.Name() != vf.Name.Name() {
return false
}
if !haveIdenticalType(tf.Typ, vf.Typ, cmpTags) {
return false
}
if cmpTags && tf.Name.Tag() != vf.Name.Tag() {
return false
}
if tf.Offset != vf.Offset {
return false
}
if tf.Embedded() != vf.Embedded() {
return false
}
}
return true
}
return false
*/
panic("todo")
}
// toType converts from a *rtype to a Type that can be returned
// to the client of package reflect. In gc, the only concern is that
// a nil *rtype must be replaced by a nil Type, but in gccgo this
// function takes care of ensuring that multiple *rtype for the same
// type are coalesced into a single Type.
func toType(t *abi.Type) Type {
if t == nil {
return nil
}
return toRType(t)
}
// ifaceIndir reports whether t is stored indirectly in an interface value.
func ifaceIndir(t *abi.Type) bool {
return t.Kind_&abi.KindDirectIface == 0
}

View File

@@ -0,0 +1,32 @@
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package reflectlite
import (
"unsafe"
)
// unsafeheaderSlice is the runtime representation of a slice.
// It cannot be used safely or portably and its representation may
// change in a later release.
//
// Unlike reflect.SliceHeader, its Data field is sufficient to guarantee the
// data it references will not be garbage collected.
type unsafeheaderSlice struct {
Data unsafe.Pointer
Len int
Cap int
}
// unsafeheaderString is the runtime representation of a string.
// It cannot be used safely or portably and its representation may
// change in a later release.
//
// Unlike reflect.StringHeader, its Data field is sufficient to guarantee the
// data it references will not be garbage collected.
type unsafeheaderString struct {
Data unsafe.Pointer
Len int
}

View File

@@ -0,0 +1,476 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package reflectlite
import (
"unsafe"
"github.com/goplus/llgo/internal/abi"
)
// Value is the reflection interface to a Go value.
//
// Not all methods apply to all kinds of values. Restrictions,
// if any, are noted in the documentation for each method.
// Use the Kind method to find out the kind of value before
// calling kind-specific methods. Calling a method
// inappropriate to the kind of type causes a run time panic.
//
// The zero Value represents no value.
// Its IsValid method returns false, its Kind method returns Invalid,
// its String method returns "<invalid Value>", and all other methods panic.
// Most functions and methods never return an invalid value.
// If one does, its documentation states the conditions explicitly.
//
// A Value can be used concurrently by multiple goroutines provided that
// the underlying Go value can be used concurrently for the equivalent
// direct operations.
//
// To compare two Values, compare the results of the Interface method.
// Using == on two Values does not compare the underlying values
// they represent.
type Value struct {
// typ holds the type of the value represented by a Value.
typ *abi.Type
// Pointer-valued data or, if flagIndir is set, pointer to data.
// Valid when either flagIndir is set or typ.pointers() is true.
ptr unsafe.Pointer
// flag holds metadata about the value.
// The lowest bits are flag bits:
// - flagStickyRO: obtained via unexported not embedded field, so read-only
// - flagEmbedRO: obtained via unexported embedded field, so read-only
// - flagIndir: val holds a pointer to the data
// - flagAddr: v.CanAddr is true (implies flagIndir)
// Value cannot represent method values.
// The next five bits give the Kind of the value.
// This repeats typ.Kind() except for method values.
// The remaining 23+ bits give a method number for method values.
// If flag.kind() != Func, code can assume that flagMethod is unset.
// If ifaceIndir(typ), code can assume that flagIndir is set.
flag
// A method value represents a curried method invocation
// like r.Read for some receiver r. The typ+val+flag bits describe
// the receiver r, but the flag's Kind bits say Func (methods are
// functions), and the top bits of the flag give the method number
// in r's type's method table.
}
type flag uintptr
const (
flagKindWidth = 5 // there are 27 kinds
flagKindMask flag = 1<<flagKindWidth - 1
flagStickyRO flag = 1 << 5
flagEmbedRO flag = 1 << 6
flagIndir flag = 1 << 7
flagAddr flag = 1 << 8
flagMethod flag = 1 << 9
flagMethodShift = 10
flagRO flag = flagStickyRO | flagEmbedRO
)
func (f flag) kind() Kind {
return Kind(f & flagKindMask)
}
func (f flag) ro() flag {
if f&flagRO != 0 {
return flagStickyRO
}
return 0
}
// pointer returns the underlying pointer represented by v.
// v.Kind() must be Pointer, Map, Chan, Func, or UnsafePointer
func (v Value) pointer() unsafe.Pointer {
/*
if v.typ.Size() != goarch.PtrSize || !v.typ.Pointers() {
panic("can't call pointer on a non-pointer Value")
}
if v.flag&flagIndir != 0 {
return *(*unsafe.Pointer)(v.ptr)
}
return v.ptr
*/
panic("todo")
}
// packEface converts v to the empty interface.
func packEface(v Value) any {
t := v.typ
var i any
e := (*emptyInterface)(unsafe.Pointer(&i))
// First, fill in the data portion of the interface.
switch {
case ifaceIndir(t):
if v.flag&flagIndir == 0 {
panic("bad indir")
}
// Value is indirect, and so is the interface we're making.
ptr := v.ptr
if v.flag&flagAddr != 0 {
// TODO: pass safe boolean from valueInterface so
// we don't need to copy if safe==true?
c := unsafe_New(t)
typedmemmove(t, c, ptr)
ptr = c
}
e.word = ptr
case v.flag&flagIndir != 0:
// Value is indirect, but interface is direct. We need
// to load the data at v.ptr into the interface data word.
e.word = *(*unsafe.Pointer)(v.ptr)
default:
// Value is direct, and so is the interface.
e.word = v.ptr
}
// Now, fill in the type portion. We're very careful here not
// to have any operation between the e.word and e.typ assignments
// that would let the garbage collector observe the partially-built
// interface value.
e.typ = t
return i
}
// unpackEface converts the empty interface i to a Value.
func unpackEface(i any) Value {
e := (*emptyInterface)(unsafe.Pointer(&i))
// NOTE: don't read e.word until we know whether it is really a pointer or not.
t := e.typ
if t == nil {
return Value{}
}
f := flag(t.Kind())
if ifaceIndir(t) {
f |= flagIndir
}
return Value{t, e.word, f}
}
// A ValueError occurs when a Value method is invoked on
// a Value that does not support it. Such cases are documented
// in the description of each method.
type ValueError struct {
Method string
Kind Kind
}
func (e *ValueError) Error() string {
if e.Kind == 0 {
return "reflect: call of " + e.Method + " on zero Value"
}
return "reflect: call of " + e.Method + " on " + e.Kind.String() + " Value"
}
// methodName returns the name of the calling method,
// assumed to be two stack frames above.
func methodName() string {
/* TODO(xsw):
pc, _, _, _ := runtime.Caller(2)
f := runtime.FuncForPC(pc)
if f == nil {
return "unknown method"
}
return f.Name()
*/
return "unknown method"
}
// emptyInterface is the header for an interface{} value.
type emptyInterface struct {
typ *abi.Type
word unsafe.Pointer
}
// mustBeExported panics if f records that the value was obtained using
// an unexported field.
func (f flag) mustBeExported() {
if f == 0 {
panic(&ValueError{methodName(), 0})
}
if f&flagRO != 0 {
panic("reflect: " + methodName() + " using value obtained using unexported field")
}
}
// mustBeAssignable panics if f records that the value is not assignable,
// which is to say that either it was obtained using an unexported field
// or it is not addressable.
func (f flag) mustBeAssignable() {
if f == 0 {
panic(&ValueError{methodName(), abi.Invalid})
}
// Assignable if addressable and not read-only.
if f&flagRO != 0 {
panic("reflect: " + methodName() + " using value obtained using unexported field")
}
if f&flagAddr == 0 {
panic("reflect: " + methodName() + " using unaddressable value")
}
}
// CanSet reports whether the value of v can be changed.
// A Value can be changed only if it is addressable and was not
// obtained by the use of unexported struct fields.
// If CanSet returns false, calling Set or any type-specific
// setter (e.g., SetBool, SetInt) will panic.
func (v Value) CanSet() bool {
return v.flag&(flagAddr|flagRO) == flagAddr
}
// Elem returns the value that the interface v contains
// or that the pointer v points to.
// It panics if v's Kind is not Interface or Pointer.
// It returns the zero Value if v is nil.
func (v Value) Elem() Value {
/*
k := v.kind()
switch k {
case abi.Interface:
var eface any
if v.typ.NumMethod() == 0 {
eface = *(*any)(v.ptr)
} else {
eface = (any)(*(*interface {
M()
})(v.ptr))
}
x := unpackEface(eface)
if x.flag != 0 {
x.flag |= v.flag.ro()
}
return x
case abi.Pointer:
ptr := v.ptr
if v.flag&flagIndir != 0 {
ptr = *(*unsafe.Pointer)(ptr)
}
// The returned value's address is v's value.
if ptr == nil {
return Value{}
}
tt := (*ptrType)(unsafe.Pointer(v.typ))
typ := tt.Elem
fl := v.flag&flagRO | flagIndir | flagAddr
fl |= flag(typ.Kind())
return Value{typ, ptr, fl}
}
panic(&ValueError{"reflectlite.Value.Elem", v.kind()})
*/
panic("todo")
}
func valueInterface(v Value) any {
if v.flag == 0 {
panic(&ValueError{"reflectlite.Value.Interface", 0})
}
if v.kind() == abi.Interface {
// Special case: return the element inside the interface.
// Empty interface has one layout, all interfaces with
// methods have a second layout.
if v.numMethod() == 0 {
return *(*any)(v.ptr)
}
return *(*interface {
M()
})(v.ptr)
}
// TODO: pass safe to packEface so we don't need to copy if safe==true?
return packEface(v)
}
// IsNil reports whether its argument v is nil. The argument must be
// a chan, func, interface, map, pointer, or slice value; if it is
// not, IsNil panics. Note that IsNil is not always equivalent to a
// regular comparison with nil in Go. For example, if v was created
// by calling ValueOf with an uninitialized interface variable i,
// i==nil will be true but v.IsNil will panic as v will be the zero
// Value.
func (v Value) IsNil() bool {
k := v.kind()
switch k {
case abi.Chan, abi.Func, abi.Map, abi.Pointer, abi.UnsafePointer:
// if v.flag&flagMethod != 0 {
// return false
// }
ptr := v.ptr
if v.flag&flagIndir != 0 {
ptr = *(*unsafe.Pointer)(ptr)
}
return ptr == nil
case abi.Interface, abi.Slice:
// Both interface and slice are nil if first word is 0.
// Both are always bigger than a word; assume flagIndir.
return *(*unsafe.Pointer)(v.ptr) == nil
}
panic(&ValueError{"reflectlite.Value.IsNil", v.kind()})
}
// IsValid reports whether v represents a value.
// It returns false if v is the zero Value.
// If IsValid returns false, all other methods except String panic.
// Most functions and methods never return an invalid Value.
// If one does, its documentation states the conditions explicitly.
func (v Value) IsValid() bool {
return v.flag != 0
}
// Kind returns v's Kind.
// If v is the zero Value (IsValid returns false), Kind returns Invalid.
func (v Value) Kind() Kind {
return v.kind()
}
/* TODO(xsw):
// implemented in runtime:
func chanlen(unsafe.Pointer) int
func maplen(unsafe.Pointer) int
*/
// Len returns v's length.
// It panics if v's Kind is not Array, Chan, Map, Slice, or String.
func (v Value) Len() int {
k := v.kind()
switch k {
case abi.Slice:
// Slice is bigger than a word; assume flagIndir.
return (*unsafeheaderSlice)(v.ptr).Len
case abi.String:
// String is bigger than a word; assume flagIndir.
return (*unsafeheaderString)(v.ptr).Len
case abi.Array:
tt := (*arrayType)(unsafe.Pointer(v.typ))
return int(tt.Len)
/* TODO(xsw):
case abi.Chan:
return chanlen(v.pointer())
case abi.Map:
return maplen(v.pointer())
*/
}
panic(&ValueError{"reflect.Value.Len", v.kind()})
}
// NumMethod returns the number of exported methods in the value's method set.
func (v Value) numMethod() int {
/*
if v.typ == nil {
panic(&ValueError{"reflectlite.Value.NumMethod", abi.Invalid})
}
return v.typ.NumMethod()
*/
panic("todo")
}
// Set assigns x to the value v.
// It panics if CanSet returns false.
// As in Go, x's value must be assignable to v's type.
func (v Value) Set(x Value) {
v.mustBeAssignable()
x.mustBeExported() // do not let unexported x leak
var target unsafe.Pointer
if v.kind() == abi.Interface {
target = v.ptr
}
x = x.assignTo("reflectlite.Set", v.typ, target)
if x.flag&flagIndir != 0 {
typedmemmove(v.typ, v.ptr, x.ptr)
} else {
*(*unsafe.Pointer)(v.ptr) = x.ptr
}
}
// Type returns v's type.
func (v Value) Type() Type {
f := v.flag
if f == 0 {
panic(&ValueError{"reflectlite.Value.Type", abi.Invalid})
}
// Method values not supported.
return toRType(v.typ)
}
/*
* constructors
*/
//go:linkname unsafe_New github.com/goplus/llgo/internal/runtime.New
func unsafe_New(*abi.Type) unsafe.Pointer
// ValueOf returns a new Value initialized to the concrete value
// stored in the interface i. ValueOf(nil) returns the zero Value.
func ValueOf(i any) Value {
if i == nil {
return Value{}
}
return unpackEface(i)
}
// assignTo returns a value v that can be assigned directly to typ.
// It panics if v is not assignable to typ.
// For a conversion to an interface type, target is a suggested scratch space to use.
func (v Value) assignTo(context string, dst *abi.Type, target unsafe.Pointer) Value {
// if v.flag&flagMethod != 0 {
// v = makeMethodValue(context, v)
// }
switch {
case directlyAssignable(dst, v.typ):
// Overwrite type so that they match.
// Same memory layout, so no harm done.
fl := v.flag&(flagAddr|flagIndir) | v.flag.ro()
fl |= flag(dst.Kind())
return Value{dst, v.ptr, fl}
case implements(dst, v.typ):
if target == nil {
target = unsafe_New(dst)
}
if v.Kind() == abi.Interface && v.IsNil() {
// A nil ReadWriter passed to nil Reader is OK,
// but using ifaceE2I below will panic.
// Avoid the panic by returning a nil dst (e.g., Reader) explicitly.
return Value{dst, nil, flag(abi.Interface)}
}
/* TODO(xsw):
x := valueInterface(v)
if dst.NumMethod() == 0 {
*(*any)(target) = x
} else {
ifaceE2I(dst, x, target)
}
return Value{dst, target, flagIndir | flag(abi.Interface)}
*/
}
// Failed.
// TODO(xsw):
// panic(context + ": value of type " + toRType(v.typ).String() + " is not assignable to type " + toRType(dst).String())
panic("todo")
}
// arrayAt returns the i-th element of p,
// an array whose elements are eltSize bytes wide.
// The array pointed at by p must have at least i+1 elements:
// it is invalid (but impossible to check here) to pass i >= len,
// because then the result will point outside the array.
// whySafe must explain why i < len. (Passing "i < len" is fine;
// the benefit is to surface this assumption at the call site.)
func arrayAt(p unsafe.Pointer, i int, eltSize uintptr, whySafe string) unsafe.Pointer {
return add(p, uintptr(i)*eltSize, "i < len")
}
// func ifaceE2I(t *abi.Type, src any, dst unsafe.Pointer)
// typedmemmove copies a value of type t to dst from src.
//
//go:linkname typedmemmove github.com/goplus/llgo/internal/runtime.Typedmemmove
func typedmemmove(t *abi.Type, dst, src unsafe.Pointer)