/* * Copyright (c) 2024 The GoPlus Authors (goplus.org). All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // Copyright 2012 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // MakeFunc implementation. package reflect import ( "unsafe" "github.com/goplus/llgo/runtime/abi" c "github.com/goplus/llgo/runtime/internal/clite" "github.com/goplus/llgo/runtime/internal/ffi" "github.com/goplus/llgo/runtime/internal/runtime" ) type funcData struct { ftyp *funcType fn func(args []Value) (results []Value) nin int } func MakeFunc(typ Type, fn func(args []Value) (results []Value)) Value { if typ.Kind() != Func { panic("reflect: call of MakeFunc with non-Func type") } t := typ.common() ftyp := (*funcType)(unsafe.Pointer(t)) sig, err := toFFISig(append([]*abi.Type{unsafePointerType}, ftyp.In...), ftyp.Out) if err != nil { panic(err) } closure := ffi.NewClosure() switch len(ftyp.Out) { case 0: err = closure.Bind(sig, func(cif *ffi.Signature, ret unsafe.Pointer, args *unsafe.Pointer, userdata unsafe.Pointer) { fd := (*funcData)(userdata) ins := make([]Value, fd.nin) for i := 0; i < fd.nin; i++ { ins[i] = ffiToValue(ffi.Index(args, uintptr(i+1)), fd.ftyp.In[i]) } fd.fn(ins) }, unsafe.Pointer(&funcData{ftyp: ftyp, fn: fn, nin: len(ftyp.In)})) case 1: err = closure.Bind(sig, func(cif *ffi.Signature, ret unsafe.Pointer, args *unsafe.Pointer, userdata unsafe.Pointer) { fd := (*funcData)(userdata) ins := make([]Value, fd.nin) for i := 0; i < fd.nin; i++ { ins[i] = ffiToValue(ffi.Index(args, uintptr(i+1)), fd.ftyp.In[i]) } out := fd.fn(ins) if fd.ftyp.Out[0].IfaceIndir() { c.Memmove(ret, out[0].ptr, fd.ftyp.Out[0].Size_) } else { *(*unsafe.Pointer)(ret) = unsafe.Pointer(out[0].ptr) } }, unsafe.Pointer(&funcData{ftyp: ftyp, fn: fn, nin: len(ftyp.In)})) default: err = closure.Bind(sig, func(cif *ffi.Signature, ret unsafe.Pointer, args *unsafe.Pointer, userdata unsafe.Pointer) { fd := (*funcData)(userdata) ins := make([]Value, fd.nin) for i := 0; i < fd.nin; i++ { ins[i] = ffiToValue(ffi.Index(args, uintptr(i+1)), fd.ftyp.In[i]) } outs := fd.fn(ins) var offset uintptr = 0 for i, out := range outs { if fd.ftyp.Out[i].IfaceIndir() { c.Memmove(add(ret, offset, ""), out.ptr, fd.ftyp.Out[i].Size_) } else { *(*unsafe.Pointer)(add(ret, offset, "")) = unsafe.Pointer(out.ptr) } offset += fd.ftyp.Out[i].Size_ } }, unsafe.Pointer(&funcData{ftyp: ftyp, fn: fn, nin: len(ftyp.In)})) } if err != nil { panic("libffi error: " + err.Error()) } styp := runtime.Struct("", 2*unsafe.Sizeof(0), abi.StructField{ Name_: "$f", Typ: &ftyp.Type, }, abi.StructField{ Name_: "$data", Typ: unsafePointerType, }) fv := &struct { fn unsafe.Pointer env unsafe.Pointer }{closure.Fn, unsafe.Pointer(&fn)} return Value{styp, unsafe.Pointer(fv), flagIndir | flag(Func)} } func ffiToValue(ptr unsafe.Pointer, typ *abi.Type) (v Value) { kind := typ.Kind() v.typ_ = typ v.flag = flag(kind) if typ.IfaceIndir() { v.flag |= flagIndir v.ptr = ptr } else { v.ptr = *(*unsafe.Pointer)(ptr) } return } /* import ( "unsafe" ) // makeFuncImpl is the closure value implementing the function // returned by MakeFunc. // The first three words of this type must be kept in sync with // methodValue and runtime.reflectMethodValue. // Any changes should be reflected in all three. type makeFuncImpl struct { makeFuncCtxt ftyp *funcType fn func([]Value) []Value } // MakeFunc returns a new function of the given Type // that wraps the function fn. When called, that new function // does the following: // // - converts its arguments to a slice of Values. // - runs results := fn(args). // - returns the results as a slice of Values, one per formal result. // // The implementation fn can assume that the argument Value slice // has the number and type of arguments given by typ. // If typ describes a variadic function, the final Value is itself // a slice representing the variadic arguments, as in the // body of a variadic function. The result Value slice returned by fn // must have the number and type of results given by typ. // // The Value.Call method allows the caller to invoke a typed function // in terms of Values; in contrast, MakeFunc allows the caller to implement // a typed function in terms of Values. // // The Examples section of the documentation includes an illustration // of how to use MakeFunc to build a swap function for different types. func MakeFunc(typ Type, fn func(args []Value) (results []Value)) Value { if typ.Kind() != Func { panic("reflect: call of MakeFunc with non-Func type") } t := typ.common() ftyp := (*funcType)(unsafe.Pointer(t)) code := abi.FuncPCABI0(makeFuncStub) // makeFuncImpl contains a stack map for use by the runtime _, _, abid := funcLayout(ftyp, nil) impl := &makeFuncImpl{ makeFuncCtxt: makeFuncCtxt{ fn: code, stack: abid.stackPtrs, argLen: abid.stackCallArgsSize, regPtrs: abid.inRegPtrs, }, ftyp: ftyp, fn: fn, } return Value{t, unsafe.Pointer(impl), flag(Func)} } // makeFuncStub is an assembly function that is the code half of // the function returned from MakeFunc. It expects a *callReflectFunc // as its context register, and its job is to invoke callReflect(ctxt, frame) // where ctxt is the context register and frame is a pointer to the first // word in the passed-in argument frame. func makeFuncStub() // The first 3 words of this type must be kept in sync with // makeFuncImpl and runtime.reflectMethodValue. // Any changes should be reflected in all three. type methodValue struct { makeFuncCtxt method int rcvr Value } */ // makeMethodValue converts v from the rcvr+method index representation // of a method value to an actual method func value, which is // basically the receiver value with a special bit set, into a true // func value - a value holding an actual func. The output is // semantically equivalent to the input as far as the user of package // reflect can tell, but the true func representation can be handled // by code like Convert and Interface and Assign. func makeMethodValue(op string, v Value) Value { if v.flag&flagMethod == 0 { panic("reflect: internal error: invalid use of makeMethodValue") } // Ignoring the flagMethod bit, v describes the receiver, not the method type. fl := v.flag & (flagRO | flagAddr | flagIndir) fl |= flag(v.typ().Kind()) rcvr := Value{v.typ(), v.ptr, fl} // v.Type returns the actual type of the method value. ftyp := (*funcType)(unsafe.Pointer(v.Type().(*rtype))) typ := runtime.Struct("", 2*unsafe.Sizeof(0), abi.StructField{ Name_: "$f", Typ: &ftyp.Type, }, abi.StructField{ Name_: "$data", Typ: unsafePointerType, }) typ.TFlag |= abi.TFlagClosure _, _, fn := methodReceiver(op, rcvr, int(v.flag)>>flagMethodShift) fv := &struct { fn unsafe.Pointer env unsafe.Pointer }{fn, v.ptr} // Cause panic if method is not appropriate. // The panic would still happen during the call if we omit this, // but we want Interface() and other operations to fail early. return Value{typ, unsafe.Pointer(fv), v.flag&flagRO | flagIndir | flag(Func)} } var unsafePointerType = rtypeOf(unsafe.Pointer(nil)) /* func methodValueCallCodePtr() uintptr { return abi.FuncPCABI0(methodValueCall) } // methodValueCall is an assembly function that is the code half of // the function returned from makeMethodValue. It expects a *methodValue // as its context register, and its job is to invoke callMethod(ctxt, frame) // where ctxt is the context register and frame is a pointer to the first // word in the passed-in argument frame. func methodValueCall() // This structure must be kept in sync with runtime.reflectMethodValue. // Any changes should be reflected in all both. type makeFuncCtxt struct { fn uintptr stack *bitVector // ptrmap for both stack args and results argLen uintptr // just args regPtrs abi.IntArgRegBitmap } // moveMakeFuncArgPtrs uses ctxt.regPtrs to copy integer pointer arguments // in args.Ints to args.Ptrs where the GC can see them. // // This is similar to what reflectcallmove does in the runtime, except // that happens on the return path, whereas this happens on the call path. // // nosplit because pointers are being held in uintptr slots in args, so // having our stack scanned now could lead to accidentally freeing // memory. // //go:nosplit func moveMakeFuncArgPtrs(ctxt *makeFuncCtxt, args *abi.RegArgs) { for i, arg := range args.Ints { // Avoid write barriers! Because our write barrier enqueues what // was there before, we might enqueue garbage. if ctxt.regPtrs.Get(i) { *(*uintptr)(unsafe.Pointer(&args.Ptrs[i])) = arg } else { // We *must* zero this space ourselves because it's defined in // assembly code and the GC will scan these pointers. Otherwise, // there will be garbage here. *(*uintptr)(unsafe.Pointer(&args.Ptrs[i])) = 0 } } } */