// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. //go:build unix // Fork, exec, wait, etc. package syscall import ( "errors" "runtime" "sync" "unsafe" "github.com/goplus/llgo/c" "github.com/goplus/llgo/c/os" "github.com/goplus/llgo/c/syscall" ) // ForkLock is used to synchronize creation of new file descriptors // with fork. // // We want the child in a fork/exec sequence to inherit only the // file descriptors we intend. To do that, we mark all file // descriptors close-on-exec and then, in the child, explicitly // unmark the ones we want the exec'ed program to keep. // Unix doesn't make this easy: there is, in general, no way to // allocate a new file descriptor close-on-exec. Instead you // have to allocate the descriptor and then mark it close-on-exec. // If a fork happens between those two events, the child's exec // will inherit an unwanted file descriptor. // // This lock solves that race: the create new fd/mark close-on-exec // operation is done holding ForkLock for reading, and the fork itself // is done holding ForkLock for writing. At least, that's the idea. // There are some complications. // // Some system calls that create new file descriptors can block // for arbitrarily long times: open on a hung NFS server or named // pipe, accept on a socket, and so on. We can't reasonably grab // the lock across those operations. // // It is worse to inherit some file descriptors than others. // If a non-malicious child accidentally inherits an open ordinary file, // that's not a big deal. On the other hand, if a long-lived child // accidentally inherits the write end of a pipe, then the reader // of that pipe will not see EOF until that child exits, potentially // causing the parent program to hang. This is a common problem // in threaded C programs that use popen. // // Luckily, the file descriptors that are most important not to // inherit are not the ones that can take an arbitrarily long time // to create: pipe returns instantly, and the net package uses // non-blocking I/O to accept on a listening socket. // The rules for which file descriptor-creating operations use the // ForkLock are as follows: // // - Pipe. Use pipe2 if available. Otherwise, does not block, // so use ForkLock. // - Socket. Use SOCK_CLOEXEC if available. Otherwise, does not // block, so use ForkLock. // - Open. Use O_CLOEXEC if available. Otherwise, may block, // so live with the race. // - Dup. Use F_DUPFD_CLOEXEC or dup3 if available. Otherwise, // does not block, so use ForkLock. var ForkLock sync.RWMutex func CloseOnExec(fd int) { /* TODO(xsw): fcntl(fd, F_SETFD, FD_CLOEXEC) */ panic("todo: syscall.CloseOnExec") } func SetNonblock(fd int, nonblocking bool) (err error) { /* TODO(xsw): flag, err := fcntl(fd, F_GETFL, 0) if err != nil { return err } if nonblocking { flag |= O_NONBLOCK } else { flag &^= O_NONBLOCK } _, err = fcntl(fd, F_SETFL, flag) return err */ panic("todo: syscall.SetNonblock") } // Credential holds user and group identities to be assumed // by a child process started by StartProcess. type Credential struct { Uid uint32 // User ID. Gid uint32 // Group ID. Groups []uint32 // Supplementary group IDs. NoSetGroups bool // If true, don't set supplementary groups } // ProcAttr holds attributes that will be applied to a new process started // by StartProcess. type ProcAttr struct { Dir string // Current working directory. Env []string // Environment. Files []uintptr // File descriptors. Sys *SysProcAttr } var zeroProcAttr ProcAttr var zeroSysProcAttr SysProcAttr func forkExec(argv0 string, argv []string, attr *ProcAttr) (pid int, err error) { var p [2]int var n int var err1 Errno var wstatus WaitStatus if attr == nil { attr = &zeroProcAttr } sys := attr.Sys if sys == nil { sys = &zeroSysProcAttr } // Convert args to C form. argv0p := c.AllocaCStr(argv0) argvp := c.AllocaCStrs(argv, true) envvp := c.AllocaCStrs(attr.Env, true) if (runtime.GOOS == "freebsd" || runtime.GOOS == "dragonfly") && len(argv) > 0 && len(argv[0]) > len(argv0) { *argvp = argv0p } var chroot *c.Char if sys.Chroot != "" { chroot = c.AllocaCStr(sys.Chroot) } var dir *c.Char if attr.Dir != "" { dir = c.AllocaCStr(attr.Dir) } // Both Setctty and Foreground use the Ctty field, // but they give it slightly different meanings. if sys.Setctty && sys.Foreground { return 0, errors.New("both Setctty and Foreground set in SysProcAttr") } if sys.Setctty && sys.Ctty >= len(attr.Files) { return 0, errors.New("Setctty set but Ctty not valid in child") } acquireForkLock() // Allocate child status pipe close on exec. if err = forkExecPipe(p[:]); err != nil { releaseForkLock() return 0, err } // Kick off child. pid, err1 = forkAndExecInChild(argv0p, argvp, envvp, chroot, dir, attr, sys, p[1]) if err1 != 0 { Close(p[0]) Close(p[1]) releaseForkLock() return 0, Errno(err1) } releaseForkLock() // Read child error status from pipe. Close(p[1]) for { n, err = readlen(p[0], (*byte)(unsafe.Pointer(&err1)), int(unsafe.Sizeof(err1))) if err != Errno(syscall.EINTR) { break } } Close(p[0]) if err != nil || n != 0 { if n == int(unsafe.Sizeof(err1)) { err = Errno(err1) } if err == nil { err = Errno(syscall.EPIPE) } // Child failed; wait for it to exit, to make sure // the zombies don't accumulate. _, err1 := Wait4(pid, &wstatus, 0, nil) for err1 == Errno(syscall.EINTR) { _, err1 = Wait4(pid, &wstatus, 0, nil) } return 0, err } // Read got EOF, so pipe closed on exec, so exec succeeded. return pid, nil } // Combination of fork and exec, careful to be thread safe. func ForkExec(argv0 string, argv []string, attr *ProcAttr) (pid int, err error) { return forkExec(argv0, argv, attr) } // StartProcess wraps ForkExec for package os. func StartProcess(argv0 string, argv []string, attr *ProcAttr) (pid int, handle uintptr, err error) { pid, err = forkExec(argv0, argv, attr) return pid, 0, err } /* TODO(xsw): // Implemented in runtime package. func runtime_BeforeExec() func runtime_AfterExec() // execveLibc is non-nil on OS using libc syscall, set to execve in exec_libc.go; this // avoids a build dependency for other platforms. var execveLibc func(path uintptr, argv uintptr, envp uintptr) Errno var execveDarwin func(path *byte, argv **byte, envp **byte) error var execveOpenBSD func(path *byte, argv **byte, envp **byte) error */ // Exec invokes the execve(2) system call. func Exec(argv0 string, argv []string, envv []string) (err error) { ret := os.Execve(c.AllocaCStr(argv0), c.AllocaCStrs(argv, true), c.AllocaCStrs(envv, true)) if ret == 0 { return nil } return Errno(ret) }