Files
llgo/ssa/expr.go
2024-04-26 00:31:02 +08:00

423 lines
11 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
/*
* Copyright (c) 2024 The GoPlus Authors (goplus.org). All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package ssa
import (
"bytes"
"fmt"
"go/constant"
"go/token"
"go/types"
"log"
"github.com/goplus/llvm"
)
// -----------------------------------------------------------------------------
type Expr struct {
impl llvm.Value
Type
}
/*
// TypeOf returns the type of the expression.
func (v Expr) TypeOf() types.Type {
return v.t
}
*/
// -----------------------------------------------------------------------------
func llvmValues(vals []Expr) []llvm.Value {
ret := make([]llvm.Value, len(vals))
for i, v := range vals {
ret[i] = v.impl
}
return ret
}
// -----------------------------------------------------------------------------
func (p Program) Null(t Type) Expr {
return Expr{llvm.ConstNull(t.ll), t}
}
func (p Program) BoolVal(v bool) Expr {
t := p.Bool()
var bv uint64
if v {
bv = 1
}
ret := llvm.ConstInt(t.ll, bv, v)
return Expr{ret, t}
}
func (p Program) IntVal(v uint64, t Type) Expr {
ret := llvm.ConstInt(t.ll, v, false)
return Expr{ret, t}
}
func (p Program) Val(v interface{}) Expr {
switch v := v.(type) {
case int:
return p.IntVal(uint64(v), p.Int())
case bool:
return p.BoolVal(v)
case float64:
t := p.Float64()
ret := llvm.ConstFloat(t.ll, v)
return Expr{ret, t}
}
panic("todo")
}
func (b Builder) Const(v constant.Value, typ Type) Expr {
switch t := typ.t.(type) {
case *types.Basic:
kind := t.Kind()
switch {
case kind == types.Bool:
return b.prog.BoolVal(constant.BoolVal(v))
case kind >= types.Int && kind <= types.Uintptr:
if v, exact := constant.Uint64Val(v); exact {
return b.prog.IntVal(v, typ)
}
}
}
panic("todo")
}
// -----------------------------------------------------------------------------
const (
mathOpBase = token.ADD
mathOpLast = token.REM
)
var mathOpToLLVM = []llvm.Opcode{
int(token.ADD-mathOpBase)<<2 | vkSigned: llvm.Add,
int(token.ADD-mathOpBase)<<2 | vkUnsigned: llvm.Add,
int(token.ADD-mathOpBase)<<2 | vkFloat: llvm.FAdd,
int(token.SUB-mathOpBase)<<2 | vkSigned: llvm.Sub,
int(token.SUB-mathOpBase)<<2 | vkUnsigned: llvm.Sub,
int(token.SUB-mathOpBase)<<2 | vkFloat: llvm.FSub,
int(token.MUL-mathOpBase)<<2 | vkSigned: llvm.Mul,
int(token.MUL-mathOpBase)<<2 | vkUnsigned: llvm.Mul,
int(token.MUL-mathOpBase)<<2 | vkFloat: llvm.FMul,
int(token.QUO-mathOpBase)<<2 | vkSigned: llvm.SDiv,
int(token.QUO-mathOpBase)<<2 | vkUnsigned: llvm.UDiv,
int(token.QUO-mathOpBase)<<2 | vkFloat: llvm.FDiv,
int(token.REM-mathOpBase)<<2 | vkSigned: llvm.SRem,
int(token.REM-mathOpBase)<<2 | vkUnsigned: llvm.URem,
int(token.REM-mathOpBase)<<2 | vkFloat: llvm.FRem,
}
func mathOpIdx(op token.Token, x valueKind) int {
return int(op-mathOpBase)<<2 | x
}
// ADD SUB MUL QUO REM + - * / %
func isMathOp(op token.Token) bool {
return op >= mathOpBase && op <= mathOpLast
}
const (
logicOpBase = token.AND
logicOpLast = token.AND_NOT
)
var logicOpToLLVM = []llvm.Opcode{
token.AND - logicOpBase: llvm.And,
token.OR - logicOpBase: llvm.Or,
token.XOR - logicOpBase: llvm.Xor,
token.SHL - logicOpBase: llvm.Shl,
token.SHR - logicOpBase: llvm.AShr, // Arithmetic Shift Right
}
// AND OR XOR SHL SHR AND_NOT & | ^ << >> &^
func isLogicOp(op token.Token) bool {
return op >= logicOpBase && op <= logicOpLast
}
const (
predOpBase = token.EQL
predOpLast = token.GEQ
)
var intPredOpToLLVM = []llvm.IntPredicate{
token.EQL - predOpBase: llvm.IntEQ,
token.NEQ - predOpBase: llvm.IntNE,
token.LSS - predOpBase: llvm.IntSLT,
token.LEQ - predOpBase: llvm.IntSLE,
token.GTR - predOpBase: llvm.IntSGT,
token.GEQ - predOpBase: llvm.IntSGE,
}
var uintPredOpToLLVM = []llvm.IntPredicate{
token.EQL - predOpBase: llvm.IntEQ,
token.NEQ - predOpBase: llvm.IntNE,
token.LSS - predOpBase: llvm.IntULT,
token.LEQ - predOpBase: llvm.IntULE,
token.GTR - predOpBase: llvm.IntUGT,
token.GEQ - predOpBase: llvm.IntUGE,
}
var floatPredOpToLLVM = []llvm.FloatPredicate{
token.EQL - predOpBase: llvm.FloatOEQ,
token.NEQ - predOpBase: llvm.FloatONE,
token.LSS - predOpBase: llvm.FloatOLT,
token.LEQ - predOpBase: llvm.FloatOLE,
token.GTR - predOpBase: llvm.FloatOGT,
token.GEQ - predOpBase: llvm.FloatOGE,
}
// EQL NEQ LSS LEQ GTR GEQ == != < <= < >=
func isPredOp(op token.Token) bool {
return op >= predOpBase && op <= predOpLast
}
// The BinOp instruction yields the result of binary operation (x op y).
// op can be:
// ADD SUB MUL QUO REM + - * / %
// AND OR XOR SHL SHR AND_NOT & | ^ << >> &^
// EQL NEQ LSS LEQ GTR GEQ == != < <= < >=
func (b Builder) BinOp(op token.Token, x, y Expr) Expr {
if debugInstr {
log.Printf("BinOp %d, %v, %v\n", op, x.impl, y.impl)
}
switch {
case isMathOp(op): // op: + - * / %
kind := x.kind
switch kind {
case vkString, vkComplex:
panic("todo")
}
idx := mathOpIdx(op, kind)
if llop := mathOpToLLVM[idx]; llop != 0 {
return Expr{llvm.CreateBinOp(b.impl, llop, x.impl, y.impl), x.Type}
}
case isLogicOp(op): // op: & | ^ << >> &^
if op == token.AND_NOT {
panic("todo")
}
kind := x.kind
llop := logicOpToLLVM[op-logicOpBase]
if op == token.SHR && kind == vkUnsigned {
llop = llvm.LShr // Logical Shift Right
}
return Expr{llvm.CreateBinOp(b.impl, llop, x.impl, y.impl), x.Type}
case isPredOp(op): // op: == != < <= < >=
tret := b.prog.Bool()
kind := x.kind
switch kind {
case vkSigned:
pred := intPredOpToLLVM[op-predOpBase]
return Expr{llvm.CreateICmp(b.impl, pred, x.impl, y.impl), tret}
case vkUnsigned:
pred := uintPredOpToLLVM[op-predOpBase]
return Expr{llvm.CreateICmp(b.impl, pred, x.impl, y.impl), tret}
case vkFloat:
pred := floatPredOpToLLVM[op-predOpBase]
return Expr{llvm.CreateFCmp(b.impl, pred, x.impl, y.impl), tret}
case vkString, vkComplex, vkBool:
panic("todo")
}
}
panic("todo")
}
// The UnOp instruction yields the result of (op x).
// ARROW is channel receive.
// MUL is pointer indirection (load).
// XOR is bitwise complement.
// SUB is negation.
// NOT is logical negation.
func (b Builder) UnOp(op token.Token, x Expr) Expr {
switch op {
case token.MUL:
return b.Load(x)
}
if debugInstr {
log.Printf("UnOp %v, %v\n", op, x.impl)
}
panic("todo")
}
// Load returns the value at the pointer ptr.
func (b Builder) Load(ptr Expr) Expr {
if debugInstr {
log.Printf("Load %v\n", ptr.impl)
}
telem := b.prog.Elem(ptr.Type)
return Expr{llvm.CreateLoad(b.impl, telem.ll, ptr.impl), telem}
}
// Store stores val at the pointer ptr.
func (b Builder) Store(ptr, val Expr) Builder {
if debugInstr {
log.Printf("Store %v, %v\n", ptr.impl, val.impl)
}
b.impl.CreateStore(val.impl, ptr.impl)
return b
}
// The IndexAddr instruction yields the address of the element at
// index `idx` of collection `x`. `idx` is an integer expression.
//
// The elements of maps and strings are not addressable; use Lookup (map),
// Index (string), or MapUpdate instead.
//
// Dynamically, this instruction panics if `x` evaluates to a nil *array
// pointer.
//
// Example printed form:
//
// t2 = &t0[t1]
func (b Builder) IndexAddr(x, idx Expr) Expr {
if debugInstr {
log.Printf("IndexAddr %v, %v\n", x.impl, idx.impl)
}
prog := b.prog
telem := prog.Index(x.Type)
pt := prog.Pointer(telem)
indices := []llvm.Value{idx.impl}
return Expr{llvm.CreateInBoundsGEP(b.impl, telem.ll, x.impl, indices), pt}
}
// The Alloc instruction reserves space for a variable of the given type,
// zero-initializes it, and yields its address.
//
// If heap is false, Alloc zero-initializes the same local variable in
// the call frame and returns its address; in this case the Alloc must
// be present in Function.Locals. We call this a "local" alloc.
//
// If heap is true, Alloc allocates a new zero-initialized variable
// each time the instruction is executed. We call this a "new" alloc.
//
// When Alloc is applied to a channel, map or slice type, it returns
// the address of an uninitialized (nil) reference of that kind; store
// the result of MakeSlice, MakeMap or MakeChan in that location to
// instantiate these types.
//
// Example printed form:
//
// t0 = local int
// t1 = new int
func (b Builder) Alloc(t Type, heap bool) (ret Expr) {
if debugInstr {
log.Printf("Alloc %v, %v\n", t.ll, heap)
}
telem := b.prog.Elem(t)
if heap {
ret.impl = llvm.CreateAlloca(b.impl, telem.ll)
} else {
panic("todo")
}
// TODO: zero-initialize
ret.Type = t
return
}
// The ChangeType instruction applies to X a value-preserving type
// change to Type().
//
// Type changes are permitted:
// - between a named type and its underlying type.
// - between two named types of the same underlying type.
// - between (possibly named) pointers to identical base types.
// - from a bidirectional channel to a read- or write-channel,
// optionally adding/removing a name.
// - between a type (t) and an instance of the type (tσ), i.e.
// Type() == σ(X.Type()) (or X.Type()== σ(Type())) where
// σ is the type substitution of Parent().TypeParams by
// Parent().TypeArgs.
//
// This operation cannot fail dynamically.
//
// Type changes may to be to or from a type parameter (or both). All
// types in the type set of X.Type() have a value-preserving type
// change to all types in the type set of Type().
//
// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
// from an explicit conversion in the source.
//
// Example printed form:
//
// t1 = changetype *int <- IntPtr (t0)
func (b Builder) ChangeType(t Type, x Expr) (ret Expr) {
if debugInstr {
log.Printf("ChangeType %v, %v\n", t.t, x.impl)
}
typ := t.t
switch typ.(type) {
case *types.Pointer:
ret.impl = b.impl.CreatePointerCast(x.impl, t.ll, "castPtr")
ret.Type = b.prog.Type(typ)
return
}
panic("todo")
}
// -----------------------------------------------------------------------------
// The Call instruction represents a function or method call.
//
// The Call instruction yields the function result if there is exactly
// one. Otherwise it returns a tuple, the components of which are
// accessed via Extract.
//
// Example printed form:
//
// t2 = println(t0, t1)
// t4 = t3()
// t7 = invoke t5.Println(...t6)
func (b Builder) Call(fn Expr, args ...Expr) (ret Expr) {
if debugInstr {
var b bytes.Buffer
fmt.Fprint(&b, "Call ", fn.impl.Name())
for _, arg := range args {
fmt.Fprint(&b, ", ", arg.impl)
}
log.Println(b.String())
}
switch t := fn.t.(type) {
case *types.Signature:
ret.Type = b.prog.retType(t)
default:
panic("todo")
}
ret.impl = llvm.CreateCall(b.impl, fn.ll, fn.impl, llvmValues(args))
return
}
// A Builtin represents a specific use of a built-in function, e.g. len.
//
// Builtins are immutable values. Builtins do not have addresses.
//
// `fn` indicates the function: one of the built-in functions from the
// Go spec (excluding "make" and "new").
func (b Builder) BuiltinCall(fn string, args ...Expr) (ret Expr) {
panic("todo")
}
// -----------------------------------------------------------------------------